• Title/Summary/Keyword: Slow strain rate technique

Search Result 8, Processing Time 0.024 seconds

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater (양극산화된 5083-H321 합금의 천연해수 내 전기화학적 부식 및 응력부식균열 특성에 관한 연구)

  • Hwang, Hyun-kyu;Shin, Dong-Ho;Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.259-264
    • /
    • 2020
  • Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.

The effect of welding methods on the stress corrosion behavior of the welded austenitic stainless steel (오스테나이트 스테인리스강 용접부의 응력부식 거동에 미치는 용접 방법의 영향)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.42-50
    • /
    • 1995
  • To study the effect of welding methods on the Stress Corrosion Cracking (SCC) behavior of welded AISI type 316L and 304 austenitic stainless steel, the Slow Strain Rate Technique(SSRT) has been adopted in the boiling 45 wt% $MgCl_2$ solution. The results are as follows. 1) Welded sections are more susceptible than base metal in SCC, and the rank of SCC, and the rasistance in welding method is TIG, MIG, $CO_2$ and ARC. 2) The Ultimate tensile strength(UTS) and the strain of both base metal and welded joint are reduced as decreasing extension rate. 3) The SCC resistance of 316L base metal and welded sections are superior than that of 304. 4) The tendency of pitting and the SCC suseptibility are agreed well, and the SCC site is welded deposit section in 316L whereas HAZ in 304.

  • PDF

A Study on the Stress Corrosion Cracking Evaluation for Weld Joint of Steel by Using Miniaturized Small Specimen (미소시험편에 의한 강 용접부의 응력부식 균열 평가에 관한 연구)

  • 유효선
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.63-75
    • /
    • 1994
  • The conventional SCC(stress corrosion cracking) test methods have much difficulty in evaluating the SCC behaviors of the localized zone like HAZ, bond line and weld metal because of the specimen size. Accordingly, the purpose of this paper is to develop the new SCC test method of the welded zone by evaluating the SCC susceptibility on parent metal and various microstructures of the welded zone by SP(small punch) test method using miniaturized small specimen and SSRT(slow strain rate test) method(SP-SSRT). Besides, this study is to verify the efficiency of the SP-SSRT results through AE(acoustic emission) test which is a useful technique to monitor the microfracture processes of the material. From the results of SCC susceptibility, SEM observation and AE test, it can be concluded that the SP-SSRT test using miniaturized small specimen(10mm*10mm*0.5mm) will be a good test method to evaluate the SCC susceptibility on the local zone such as the welded zone.

  • PDF

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D.;Dewangan, Bhupendra;Raja, V.S.;Paulose, Neeta;Babu, Narendra
    • Corrosion Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.203-208
    • /
    • 2016
  • DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.40 no.5
    • /
    • pp.129-133
    • /
    • 2020
  • The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of cold-worked 316L.

Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing (Zn-Flash 코팅 처리가 전기아연도금 시 초고강도 강재의 수소 발생, 유입 및 취화 거동에 미치는 영향)

  • Hye Rin Bang;Sang Heon Kim;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.341-350
    • /
    • 2023
  • In the present study, effects of a thin Zn-flash coating on hydrogen evolution, infusion, and embrittlement of advanced high strength steel during electro-galvanizing were examined. The electrochemical permeation technique in conjunction with impedance spectroscopy was employed under applied cathodic polarization. Moreover, a slow-strain rate test was conducted to evaluate loss of elongation (i.e., indicative of hydrogen embrittlement (HE)) and examine fracture surfaces. Results showed that the presence of a thin Zn-flash coating, even when it was not distributed uniformly, reduced hydrogen evolution rate and substantially impeded infusion of hydrogen into the steel substrate. This was primarily due to a hydrogen overvoltage on Zn coating and trapping of hydrogen at the interface of Zn coating/flash coating/steel substrate. Consequently, the sample with flash coating had a smaller HE index than the sample without flash coating. These results suggest that a thin Zn-flash coating could be an effective technical strategy for mitigating HE in advanced high-strength steels.