Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.6.267

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications  

Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University)
Seong, Hwan Goo (POSCO Technical Research Laboratories)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.18, no.6, 2019 , pp. 267-276 More about this Journal
Abstract
The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.
Keywords
Ultra-strong steel; Heat treatment; Corrosion induced hydrogen diffusion; Residual stress; Carbides;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Bian, H. Mohrbacher, J. S. Zhang, Y. T. Zhao, H. Z. Lu, and H. Dong, Adv. Manuf., 3, 27 (2015).   DOI
2 E. H. Hwang, H. G. Seong, and S. J. Kim, Kor. J. Met. Mater., 56, 570 (2018).   DOI
3 J. Yang, F. Huang, Z. Guo, Y. Rong, and N. Chen, Mater. Sci. Eng. A, 665, 76 (2016).   DOI
4 M. C. Jo, J. Y. Park, S. S. S, S. W. Kim, J. K. Oh, and S. H. Lee, Mater. Sci. Eng. A, 707, 65 (2017).   DOI
5 S. Takagi, Y. Toji, M. Yoshino, and K. Hasegawa, ISIJ Int., 52, 316 (2012).   DOI
6 H. Karbasian and A. E. Tekkaya, J. Mater. Process. Technol., 210, 2103 (2010).   DOI
7 A. R. Ranji A. H.and Zakeri, J. Nav. Archit. Mar. Eng., 7, 93 (2010).
8 H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016).   DOI
9 N. Staicopolus, J. Electrochem. Soc., 110, 1121 (1963).   DOI
10 F. Farelas, M. Galicia, B. Brown, S. Nesis, and H. Castaneda, Corros. Sci., 52, 509 (2010).   DOI
11 M. Tetsuya, H. Kohei, and K. Hidetaka, JFE Technical Report, 4, 38 (2004).
12 S. Jayabal, G. Saranya, J. Wu, Y. Liu, D. Geng, and X. Meng, J. Mater. Chem. A, 5, 47 (2017).   DOI
13 A. M. Mebel and D. Y. Hwang, J. Phys. Chem. A, 105, 7460 (2001).   DOI
14 M. Wasim, C. Q. Li, M. Mahmoodian, and D. Robert, J. Mater. Civ. Eng., 31, 04018349-1 (2019).   DOI
15 M. Cabrini, S. Lorenzi, T. Pastore, and D. P. Bucella, Metals, 8, 158 (2018).   DOI
16 J. Cwiek, J. Achiev. Mater. Manuf. Eng., 37, 193 (2009).
17 W. Hui, H. Zhang, Y. Zhang, X. Zhao, and C. Shao, Mater. Sci. Eng. A, 674, 615 (2016).   DOI
18 J. Zhao, Z. Jiang, and C. S. Lee, Corros. Sci., 82, 380 (2014).   DOI
19 S. A. Mujahid and H. K. D. H. Bhadeshia, Acta. Metall. Mater., 40, 389 (1992).   DOI
20 ISO 17081:2004 (E), Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO, Switzerland (2004).
21 S. J. Kim, J. S. Park, E. H. Hwang, S. M. Ryu, H. G. Seong, and Y. R. Cho, Int. J. Hydrogen Energ., 43, 17912 (2018).   DOI
22 ASTM G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2013).
23 J. Krawczyk, P. Bala, and J. Pacyna, J. Microsc., 237, 411 (2010).   DOI
24 Y. Wang, S. Denis, B. Appolaire, and P. Archambault, J. Phys. IV France, 120, 103 (2004).
25 K. H. Jack, JISI, 169, 26 (1951).
26 M. Koyama, E. Akiyama, Y. K. Lee, D. Raabe, and K. Tsuzaki, Int. J. Hydrogen Energ., 42, 12706 (2017).   DOI
27 Y. Ohmori and S. Sugisawa, Autumn Meeting of the Japan Institute of Metals, 12, 170 (1971).
28 P. J. Konijnenberg, S. Zaefferer, and D. Raabe, Acta Mater., 99, 402 (2015).   DOI
29 S. J. Kim, E. W. Yun, H. G. Jung, and K. Y. Kim, J. Electrochem. Soc., 161, 173 (2014).
30 A. Adrover, M. Hiona, L. Capobianco, P. Tripodi, and V. Violante, J. Alloy. Comp., 358, 268 (2003).   DOI
31 H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016).   DOI
32 G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983).   DOI
33 G. W. Hong and J. Y. Lee, Metall. Trans. A, 14, 156 (1983).   DOI
34 J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Corros. Sci. Tech., 17, 242 (2018).
35 E. Serra, A. Perujo, and G. Benamati, J. Nucl. Mater., 245, 108 (1997).   DOI
36 B. D. Craig, Acta Metall., 25, 1027 (1977).   DOI
37 S. J. Kim, E. H. Hwang, J. S. Park, S. M. Ryu, D. W. Yun, and H. G. Seong, npj Mater. Degrad., 3, 1 (2019).   DOI
38 J. W. Mullin, Crystallization, 3rd ed., p. ?, Oxford press, Oxford, UK (1993).
39 Y. S. Kim and J. G. Kim, Metals, 7, 182 (2017).   DOI