Acknowledgement
This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002). Also, this research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).
References
- H. Gerengi, N. Sen, I. Uygur, and M. M. Solomon, Corrosion response of ultra-high strength steels used for automotive applications, Materials Research Express, 6, 0865a6 (2019). Doi: https://doi.org/10.1088/2053-1591/ab2178
- N. Wint, J. Leung, J. H. Sullivan, D. J. Penney, and Y. Gao, The galvanic corrosion of welded ultra-high strength steels used for automotive applications, Corrosion Science, 136, 366 (2018). Doi: https://doi.org/10.1016/j.corsci.2018.03.025
- J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Advanced high strength steels for automotive industry, Revista De Metalurgia, 48, 118 (2012). Doi: https://doi.org/10.3989/revmetalm.1158
- K. Sadananda, J. H. Yang, N. Iyyar, N. Phan, and A. Rahman, Sacrificial Zn-Ni coatings by electroplating and hydrogen embrittlement of high-strength steels, Corrosion reviews, 39, 487 (2021). Doi: https://doi.org/10.1515/corrrev-2021-0038
- D. H. Shim, T. Lee, J. Lee, H. J. Lee, J. Y. Yoo, and C. S. Lee, Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite, Materials Science and Engineering: A, 700, 473 (2017). Doi: https://doi.org/10.1016/j.msea.2017.06.043
- S. V. Brahimi, S. R. Sriraman, and S. Yue, Hydrogen embrittlement characteristics of two tempered martensitic steel alloys for high-strength bolting, Proceedings of the Institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science, 231, 3214 (2017). Doi: https://doi.org/10.1177/0954406216642476
- N. Eliaz, A. Shachar, B. Tal, and D. Eliezer, Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels, Engineering Failure Analysis, 9, 167 (2002). Doi: https://doi.org/10.1016/S1350-6307(01)00009-7
- S. V. Brahimi, S. Yue, and K. R. Sriraman, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philosophical Transactions of the Royal Society A, 375, 20160407 (2017). Doi: https://doi.org/10.1098/rsta.2016.0407
- H. R. Bang, J. S. Park, H. G. Seong, and S. J. Kim, Effect of minor alloying elements (C, Ni, Cr, Mo) on the long-term corrosion behaviors of ultrahigh-strength automotive steel sheet in neutral aqueous environment, Korean Journal of Metals and Materials, 60, 35 (2022). Doi: http://dx.doi.org/10.3365/KJMM.2022.60.1.35
- K. D. Chang, J. L. Gu, H. S. Fang, Z. G. Yang, B. Z. Bai, and W. Z. Zhang, Effects of heat-treatment process of a novel bainite-martensite dual-phase high strength steel on its susceptibility to hydrogen embrittlement, ISIJ International, 41, 1397 (2001). Doi: http://dx.doi.org/10.2355/isijinternational.41.1397
- H. Zhao, P. Wang, and J. Li, Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels, International Journal of Hydrogen Energy, 46, 34983 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2021.08.060
- S. M. A. Shibli, B. N. Meena, and R. Remya, A review on recent approaches in the field of hot dip galvanizing process, Surface and Coatings Technology, 262, 210 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2014.12.054
- N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, and G. Stergioudis, Microstructure of zinc hotdip galvanized coatings used for corrosion protection, Materials Letters, 60, 786 (2006). Doi: https://doi.org/10.1016/j.matlet.2005.10.013
- D. H. Coleman, G. Zheng, B. N. Popov, and R. E. White, The effects of multiple electroplated zinc layer on the inhibition of hydrogen permeation through an iron membrane, Journal of the Electrochemical Society, 143, 1871 (1996). Doi: https://doi.org/10.1149/1.1836917\
- M. Hino, S. Mukai, T. Shimada, K. Okada, and K. Horikawa, Effect of baking on hydrogen embrittlement for high strength steel treated with various zinc based electroplating from sulfate bath, Materials Transactions, 61, 2302, (2020). Doi: https://doi.org/10.2320/matertrans.MT-M2020245
- E. M. K. Hiller and M. J. Robinson, Hydrogen embrittlement of high strength steel electroplated with zinc-cobalt alloys, Corrosion Science, 46, 715 (2004). Doi: https://doi.org/10.1016/S0010-938X(03)00180-X
- T. Casanova, F. Soto, M. Eyraud, and J. Crousier, Hydrogen absorption during zinc plating on steel, Corrosion Science, 39, 529 (1997). Doi: https://doi.org/10.1016/S0010-938X(97)86101-X
- H. Kancharla, G. K. Mandal, S. S. Singh, and K. Mondal, Effects of prior copper-coating on the microstructural development and corrosion behavior of hot-dip galvanized Mn containing high strength steel sheet, Surface and Coatings Technology, 437, 128347 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128347
- A. Charkraborty, A. Mondal, S. Bysakh, M. Dutta, and S. B. Singh, Microstructural investigation of galvanized coatings with prior flash coating of copper on DP steels, Surface and Coatings Technology, 285, 220 (2016). Doi: https://doi.org/10.1016/j.surfcoat.2015.11.043
- K. Sarkar, A. Mondal, A. Chakraborty, M. Sanbui, N. Rani, and M. Dutta, Investigation of microstructure and corrosion behaviour of prior nickel deposited galvanized steels, Surface and Coatings Technology, 348, 64 (2018). Doi: https://doi.org/10.1016/j.surfcoat.2018.05.036
- Y. J. Kwak and M. S. Kim, Effect of impurities during nickel flash coating on phosphate film in sulfate bath, Journal of Corrosion Science Society of Korea, 27, 75 (1998).
- H. R. Bang, J. S. Park, S. H. Kim, M. S. Oh, and S. J. Kim, Effects of applied cathodic current on hydrogen infusion, embrittlement, and corrosion-induced hydrogen embrittlement behaviors of ultra-high strength steel for automotive application, Korean Journal of Metals and Materials, 61, 145 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.3.145
- P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen Nachrichten von der Gesellschaft der Gottingen Wissenschaften, Gottingen, Mathematisch-Physikalische Klasse, 2, 98 (1918).
- ISO 17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2004).
- M. A. V. Devanathan and Z. Stachurski, The adsorption and diffusion of electrolytic hydrogen in palladium, Proceedings of the Royal Society of London Series A, 270, 90 (1962). Doi: https://doi.org/10.1098/rspa.1962.0205
- J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel, Corrosion Science and Technology, 17, 242 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.5.242
- J. S. Park, D. B. Yun, H. G. Seong, and S. J. Kim, Effect of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of automotive ultrahigh-strength steel sheet, Corrosion Science and Technology, 20, 295 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.295
- A. Chakraborty, M. Manna, A. Pandey, and M. Dutta, Development of an improved tube galvanizing process by prior metallic coating, Journal of Materials Processing Technology, 213, 1501 (2013). Doi: https://doi.org/10.1016/j.jmatprotec.2013.03.016
- M. Manna and M. Dutta, Improvement in galvanization and galvannealing characteristics of DP 590 steel by prior Cu or Cu-Sn flash coating, Surface and Coatings Technology, 251, 29 (2014). Doi: https://doi.org/10.1016/j.surfcoat.2014.03.065
- K. Hirata, S. Likubo, M. Koyama, K. Tsuzaki, and H. Ohtani, First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron, Metallurgical and Materials Transactions A, 49, 5015 (2018). Doi: https://doi.org/10.1007/s11661-018-4815-9
- H. R. Bang, J. S. Park, and S. J. Kim, Effects of Ni-flash coating on hydrogen evolution, ad/absorption, and permeation behaviors of advanced high-strength steel during electro-Zn plating, Journal of Electroanalytical Chemistry, 944, 117653 (2023). Doi: https://doi.org/10.1016/j.jelechem.2023.117653
- J. N. Han, S. I. Pyun, and T. H. Yang, Roles of thiourea as an inhibitor in hydrogen absorption into palladium electrode, Journal of the Electrochemical Society, 144, 4266 (1997). Doi: https://doi.org/10.1149/1.1838176
- X. L. Xiong, H. X. Ma, X. Tao, J. X. Li, Y. J. Su, Q. J. Zhou, and A. A. Volinsky, Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron, Electrochimica Acta, 255, 230 (2017). Doi: https://doi.org/10.1016/j.electacta.2017.09.181
- F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. V. D. Krol, and S. Calnan, Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions, ChemElecteoChem, 8, 195 (2021). Doi: https://doi.org/10.1002/celc.202001436
- X. Tao, L. Zhang, H. Ma, X. Xiong, and Y. Su, Carbon influence on hydrogen absorption and adsorption on FeC alloy surfaces, Surface Science, 697, 121606 (2020). Doi: https://doi.org/10.1016/j.susc.2020.121606
- B. Losiewicz and A. Lasia, Study of the hydrogen absorption/diffusion in Pd80Rh20 alloy in acidic solution, Journal of Electroanalytical Chemistry, 822, 153 (2018). Doi: https://doi.org/10.1016/j.jelechem.2018.05.025
- T. H. Yang and S. I. Pyun, An investigation of the hydrogen absorption reaction into, and the hydrogen evolution reaction from, a Pd foil electrode, Journal of Electroanalytical Chemistry, 414, 127 (1996). Doi: https://doi.org/10.1016/0022-0728(96)04666-9