DOI QR코드

DOI QR Code

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D. (Kalyani Centre for Technology and Innovation, Bharat Forge Ltd.) ;
  • Dewangan, Bhupendra (Research and Development) ;
  • Raja, V.S. (Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay) ;
  • Paulose, Neeta (Gas Turbine Research Establishment (GTRE)) ;
  • Babu, Narendra (Gas Turbine Research Establishment (GTRE))
  • Received : 2016.06.07
  • Accepted : 2016.10.20
  • Published : 2016.10.31

Abstract

DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

Keywords

References

  1. T. Chevrot, Ph. D. Thesis, Cranfield University (1994).
  2. R. K. Dinnappa, Key Eng. Mat., 20-28, 2255 (1988).
  3. NASA TN D-6498, H. R. Gary, Relative Susceptibility of Titanium Alloys to Hot Salt Stress Corrosion (1971).
  4. J. D. Jackson, W. K. Boyd, The stress-corrosion and accelerated crack-propagation behaviour of titanium and titanium alloys, DMIC Technical Note, February 1(1966).
  5. J. R. Myers, J. A. Hall, Corrosion, 33, 252 (1977). https://doi.org/10.5006/0010-9312-33.7.252
  6. M. D. Pustode, V. S. Raja, N. Paulose, Corros. Sci., 82, 191 (2014). https://doi.org/10.1016/j.corsci.2014.01.013
  7. ASTM STP 397, S. P. Rideout, M. R. Louthan, J. C. L. Selby, Basic mechanisms of stress-corrosion cracking of titanium, p. 137 (1965).
  8. G. Sinigaglia, D. Taccani, B. Vicentini, Corros. Sci., 18, 781 (1978). https://doi.org/10.1016/0010-938X(78)90015-X
  9. ASTM STP 397, D. E. Piper, D. N. Fager, The Relative Stress Corrosion Cracking Susceptibility of Titanium Alloys in Presence of Hot Salt, p. 31 (1966).
  10. M. Encrenaz, P. Faure, J. A. Petit, Corros. Sci., 40, 939 (1998). https://doi.org/10.1016/S0010-938X(98)00028-6
  11. H. R. Gray, J. R. Johnston, Hot-Salt Stress-Corrosion of a Titanium Alloy in a Dynamic Air Environment, Metall. Trans. A, 1, 3105 (1970).
  12. R. L. Kirchner, E. J. Ripling, NASA First Interm Report N65-82069 (1964).
  13. M. W. Mahoney, A. S. Tetelman, Metall. Trans., 7, 1549 (1976). https://doi.org/10.1007/BF02656398
  14. R. S. Ondrejcin, Metall. Trans., 1, 3031 (1970).
  15. ASTM STP 397, R. V. Turley, C. H. Avery, Elevated Temperature Static and Dynamic Sea-Salt Stress Cracking of Titanium Alloys, p. 1 (1966).
  16. NASA TN D-5000, H. R. Gray, Hot Salt Stress Corrosion Cracking of Titanium Alloys: Generation of Hydrogen and its Embrittling Effect (1969).
  17. NASA TN D-551O, H. R. Gray, J. R. Johnston, Hot-Salt Stress-Corrosion of a Titanium Alloy Under a Simulated Turbine Engine Compressor Environment (1969).
  18. NASA TN D-6188, H. R. Gray, Role of Hydrogen in Hot-salt Stress Corrosion of a Titanium Alloy (1971).
  19. ASTM STP 397, V. C. Petersen, H. B. Bomberger, The Mechanism of Salt Attack on Titanium Alloys, p. 80 (1966).
  20. A. Oehlert, A. Atrens, Corros. Sci., 38, 1159 (1996). https://doi.org/10.1016/0010-938X(96)00010-8
  21. A. Oehlert, A. Atrens, J. Mater. Sci., 33, 775 (1998). https://doi.org/10.1023/A:1004362400904
  22. N. Winzer, A. Atrens, W. Dietzel, V. S. Raja, G. Song, K. U. Kainer, Mater. Sci. Eng. A-Struct., 488, 339 (2008). https://doi.org/10.1016/j.msea.2007.11.064
  23. N. Winzer, A. Atrens, W. Dietzel, G. Song, K. U. Kainer, JOM-J. Min. Met. Mat. S., 59, 49 (2007).
  24. N. Winzer, A. Atrens, W. Dietzel, G. Song, K. U. Kainer, Mater. Sci. Eng. A-Struct., 472, 97 (2008). https://doi.org/10.1016/j.msea.2007.03.021
  25. M. D. Pustode, V. S. Raja, Metall. Trans. A, 46, 6081 (2015). https://doi.org/10.1007/s11661-015-3155-2
  26. M. D. Pustode, V. S. Raja, M. Tamilselvi, Proceedings of the Corrosion 2013 on The stress corrosion cracking susceptibility of Ti-6Al-4V alloy in presence of hot salt, C2013-2157, Orlando, USA (2013).
  27. NASA CR-1133, R. S. Ondrejcin, M. R. Louthan, Role of Hydrogen Chloride in Hot-Salt Stress-Corrosion Cracking of Titanium-Aluminium Alloys (1968).
  28. D. F. Teter, I. M. Robertson, H. K. Birnbaum, Acta Mater., 49, 4313 (2001). https://doi.org/10.1016/S1359-6454(01)00301-9