Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.5.259

Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater  

Hwang, Hyun-kyu (Graduate school, Mokpo national maritime university)
Shin, Dong-Ho (Graduate school, Mokpo national maritime university)
Jung, Kwang-Hu (Maritime safety training team, Korea institute of maritime and fisheries technology)
Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
Publication Information
Corrosion Science and Technology / v.19, no.5, 2020 , pp. 259-264 More about this Journal
Abstract
Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.
Keywords
5083-H321; Corrosion; Stress corrosion cracking; Natural seawater; Slow strain rate test;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 S. M Moon, J. Korean Inst. Surf. Eng., 51, 1 (2018). https://doi.org/10.5695/JKISE.2018.51.1.1   DOI
2 I. C. Park, J. H. Lee, M. S. Han, and S. J. Kim. J. Korean Inst. Surf. Eng., 51(2), 87-94 (2018). https://doi.org/10.5695/JKISE.2018.51.2.87   DOI
3 I. C. Park and S. J. Kim, J. Korean Inst. Surf. Eng., 49, 349 (2016). http://dx.doi.org/10.5695/JKISE.2016.49.4.349   DOI
4 S. A. Abdel-Gawad, W. M. Osman, and A. M. Fekry, Surfaces and Interfaces, 14, 314 (2019). https://doi.org/10.1016/j.surfin.2018.08.001   DOI
5 J. R. Pickens, J. R. Gordon, and J. A. S. Green, Metall. Trans. A, 14, 925 (1983). https://doi.org/10.1007/BF02644298   DOI
6 S. Suzer, F. Kadirgan, H. M. Sohmen, A. J. Wetherilt, and I. E. Ture, Sol. Energy Mater. Sol. Cells, 52, 55 (1998). https://doi.org/10.1016/S0927-0248(97)00270-5   DOI
7 S. A. Abdel-Gawad, W. M. Osman, and A. M. Fekry, Surf. Interfaces, 14, 314 (2019).   DOI
8 D. A. Jones, Principles and prevention of corrosion, Macmillan (1992).
9 R. T. Foley, Corrosion, 42, 277 (1986). https://doi.org/10.5006/1.3584905   DOI
10 H. Ezuber, A. El-Houd, and F. El-Shawesh, Mater Des., 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021   DOI
11 M. Yasuda, F. Weinberg, and D. Tromans. J Electrochem Soc., 137, 3708 (1990). https://iopscience.iop.org/article/10.1149/1.2086291#   DOI
12 S. Y. Yu, P. M. Natishan, and W. E. O'grady, J. Electrochem. Soc., 158-166 (2000).
13 V. S Sinyavskii, Prot Met., 37, 469 (2001). https://doi.org/10.1023/A:1012374432246   DOI
14 X. Zheng, H. Castaneda, H. Gao, and A. Srivastava, Corros. Sci., 153, 53 (2019). https://doi.org/10.1016/j.corsci.2019.03.018   DOI
15 M. S. Han, S. Ko, S. H. Kim, S. K. Jang, and S. J. Kim, Met Mater Int., 14, 203 (2008). https://doi.org/10.3365/met.mat.2008.04.203   DOI