• Title/Summary/Keyword: Sizing Program

Search Result 89, Processing Time 0.021 seconds

Preliminary Round Robin Test(RRT) for Program for the Inspection of Nickel Alloy Components(PINC) - Reactor Vessel Head Penetration (RVHP) -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Song, Myung-Ho;Chung, Hae-Dong;Kim, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, the PINC project. USNRC required KINS to participate in the PINC project in May 2005. KINS organized the Korean consortium at March 2006 and Pre-RRT for RVHP were performed for the preparation of PINC RRT. Through these preliminary RRT, Korea NDE teams can learn and develop the detection and sizing technique for RVHP dissimilar metal weld. These techniques are now being prepared in Korea and need to be utilized for the In-service inspection of the RVHP and BMI of Korea Nuclear Power Plants. PINC RRT mock-ups will be helpful to training.

Fabrication of Carbon Fiber/Aluminum Preforms using Cylindrical Sputtering System (원통형 스퍼터링 장치를 이용한 탄소섬유/알루미늄 프리폼의 제작)

  • Kim, Y.C.;Han, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to prepare a high-strength Fiberglass Reinforced Metal (FRM). Aluminum covering over carbon fibers (CF) was made to increase their wettability to molten aluminum. A cylindrical sputtering apparatus was used for the covering. One tow of carbon fibers was placed along the central axis of the cylindrical target. Aluminum was uniformly coated around the carbon fiber tow. But in case of CF without sizing treatment, aluminum spread into the inside of the tow. Preforms of carbon fiber/aluminum composite were made by impregnating carbon fiber with molten aluminum. Contact angle of molten aluminum to the aluminum-coated carbon fiber was about $30^{\circ}$. The fractured section of preform was observed by SEM, which showed that molten aluminum wetted the outer part of the tow well but had not penetrated into the center, and that adhesion between CF and aluminum matrix was in good condition.

Disassembly Scheduling for Products with Assembly Structure

  • Lee Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-78
    • /
    • 2005
  • Disassembly scheduling is the problem of determining the ordering and disassembly schedules of used or end-of-life products while satisfying the demand of their parts or components over a certain planning horizon. This paper considers the case of the assembly product structure for the cost-based objective of minimizing the sum of purchase, setup, inventory holding, and disassembly operation costs. To represent and solve the problem optimally, this paper presents an integer programming model, which is a reversed form of the multi-level lot sizing formulation. Computational experiments on an example derived from the literature and a number of randomly generated test problems are done and the results are reported.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

Optimized Design of Piping Array in Solar Hot Water System (태양열 온수시스템 배관 최적설계)

  • Shin, J.C.
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.302-306
    • /
    • 2013
  • A simple method for balancing flow rates in arrays of parallel connected flat plate solar collectors has been developed. The method is based on a computer program which solves for the flow rate through each of the collectors in a reverse return plumbed array. The analysis uses conventional "K-value" techniques and assumes the effects of density variations within the system to to be negligible. It has been found that by appropriately sizing the inlet and outlet manifolds, flow maldistribution can be nearly eliminated without resorting to expensive or complicated balancing techniques.

DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION OF ZWICKER'S LOUDNESS (Zwicker 라우드니스에 대한 설계 민감도 해석 및 최적화)

  • Kang, Jung-Hwan;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.149-154
    • /
    • 2004
  • The design sensitivity analysis of Zwicker's loudness with respect to structural sizing design variables is developed. The loudness sensitivity in the critical band is composed of two equations, the derivative of main specific loudness with respect to 1/3-oct band level and global acoustic design sensitivities. The main specific loudness is calculated by using FEM, BEM tools. i.e. MSC/NASTRAN and SYSNOISE. And global acoustic sensitivity is calculated by combining acoustic and structural sensitivity using the chain rule. Structural sensitivity is obtained by using semi-analytical method and acoustic sensitivity is implemented numerically using the boundary element method. For sensitivity calculation, sensitivity analyzer of loudness (SOLO), in-house program is developed. A 1/4 scale car cavity model is optimized to show the effectiveness of the proposed method.

  • PDF

Direct Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접내진설계)

  • 박홍근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.239-246
    • /
    • 2003
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer, such as ductility limit on each member, the design concept of strong column - weak beam, and etc. Through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy As the result economical and safe design can be achieved.

  • PDF

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

Optimization of steel-concrete composite beams considering cost and environmental impact

  • Tormen, Andreia Fatima;Pravia, Zacarias Martin Chamberlain;Ramires, Fernando Busato;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.409-421
    • /
    • 2020
  • In the optimized structure sizing, the optimization methods are inserted in this context in order to obtain satisfactory solutions, which can provide more economical structures, besides allowing the consideration of the factors related to the environmental impacts in the structural design. This work proposes a mathematical model for the optimization of steel-concrete composite beams aiming to minimize the monetary cost and the environmental impact, using the Harmonic Search optimization method. Discrete variables were the dimensions of the steel profiles and the thickness of the collaborating slab of the composite steel-concrete beam. The proposed model was implemented in Fortran programming language and based on improvements in the structure of the optimization method proposed by Medeiros and Kripka (2017). To prove the effectiveness and applicability of the model, as well as the Harmonic Search method, analyzes were performed with different configurations of steel-concrete composite beams, in order to provide guidelines that make the use of these systems more streamlined. In general, the Harmonic Search optimization method has proved to be efficient in the search for the optimized solutions, as well as important considerations on the optimization of the monetary and environmental costs of steel-concrete composite beams were obtained from the developed examples.

Determination of Cage Size in Case of Non-Standard Well Size in Lift Industry (승강기 산업의 비표준 승강로에 대응하는 승강기 크기 결정 방법 연구)

  • Ko, Young-joon;Kim, Byoung-ik;Han, Kwan Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.85-93
    • /
    • 2019
  • There is currently no recognized standard for the size of lifts. Each elevator manufacturer sets the maximum allowable floor area that meets the capacity calculation standard of the elevator using the maximum used car floor area, which is defined by EN-CODE and the domestic inspection standard, and determines the elevator size based on their own standards. In this paper, we propose a method to more easily determine the elevator size. To do this, we implemented a program that calculates the size of the elevator by inputting the dimensions of the hoistway. This program will be useful method for quick decision making and elevator installation considering the elevator factors according to the already determined hoistway size of the building and calculating the EN-CODE currently used and the size of the elevator according to domestic inspection standards.