Browse > Article
http://dx.doi.org/10.12989/scs.2020.34.3.409

Optimization of steel-concrete composite beams considering cost and environmental impact  

Tormen, Andreia Fatima (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering)
Pravia, Zacarias Martin Chamberlain (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering)
Ramires, Fernando Busato (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering)
Kripka, Moacir (University of Passo Fundo, Faculty of Engineering and Architecture, Graduate Program in Civil and Environmental Engineering)
Publication Information
Steel and Composite Structures / v.34, no.3, 2020 , pp. 409-421 More about this Journal
Abstract
In the optimized structure sizing, the optimization methods are inserted in this context in order to obtain satisfactory solutions, which can provide more economical structures, besides allowing the consideration of the factors related to the environmental impacts in the structural design. This work proposes a mathematical model for the optimization of steel-concrete composite beams aiming to minimize the monetary cost and the environmental impact, using the Harmonic Search optimization method. Discrete variables were the dimensions of the steel profiles and the thickness of the collaborating slab of the composite steel-concrete beam. The proposed model was implemented in Fortran programming language and based on improvements in the structure of the optimization method proposed by Medeiros and Kripka (2017). To prove the effectiveness and applicability of the model, as well as the Harmonic Search method, analyzes were performed with different configurations of steel-concrete composite beams, in order to provide guidelines that make the use of these systems more streamlined. In general, the Harmonic Search optimization method has proved to be efficient in the search for the optimized solutions, as well as important considerations on the optimization of the monetary and environmental costs of steel-concrete composite beams were obtained from the developed examples.
Keywords
optimization; steel-concrete composite beams; Harmonic Search; composite beams;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Alankar, K. and Chaudhary, S. (2012), "Cost optimization of composite beams using genetic algorithm and artificial neural network", Proceedings of the 2012 International Conference on Computer Technology and Science, August 18-19, New Delhi.
2 Adeli, H. and Kim, H. (2001), "Cost optimization of composite floors using neural dynamics model", Commun. Numer. Method. Eng., 17(11), 771-787.   DOI
3 Klansek, U. and Kravanja, S. (2006a), "Cost estimation, optimization and competitiveness of different composite floor systems - Part 1: Self-manufacturing cost estimation of composite and steel structures", J. Constr. Steel Res., 62(5), 434-448. https://doi.org/10.1016/j.jcsr.2005.08.005.   DOI
4 Klansek, U. and Kravanja, S. (2006b), "Cost estimation, optimization and competitiveness of different composite floor systems - Part 2: Optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses", J. Constr. Steel Res., 62(5), 449-462. ttps://doi.org/10.1016/j.jcsr.2005.08.006.   DOI
5 Korouzhdeh, T., Eskandari-Naddaf, H. and Gharouni-Nik, M. (2017), "An improved ant colony model for cost optimization of composite beams", Appl. Artif. Intel., 31(1), 44-63.
6 Kravanja, S. and Silih, S. (2003), "Optimization based comparison between composite I beams and composite trusses", J. Constr. Steel Res., 59(5), 609-625. tps://doi.org/10.1016/S0143-974X(02)00045-7.   DOI
7 Lezgy-Nazargah, M. and Kafi, L. (2015), "Analysis of composite steel-concrete beams using a refined high-order beam theory", Steel Compos. Struct., 18(6), 1353-1368. https://doi.org/10.12989/scs.2015.18.6.1353.   DOI
8 Kravanja, S.; Zula, T. and Klansek, U. (2017), "Multi-parametric MINLP optimization study of a composite I beam floor system", Eng. Struct., 130, 316-335. https://doi.org/10.1016/j.engstruct.2016.09.012.   DOI
9 Kripka, M., Medeiros, G.F. and Lemonge, A.C.C. (2015), "Use of optimization for automatic grouping of beam cross-section dimensions in reinforced concrete building structures", Eng. Struct., 99, 311-318. https://doi.org/10.1016/j.engstruct.2015.05.001.   DOI
10 Lagaros, N.D., Fragiadakis, M., Papadrakakis, M. and Tsompanakis, Y. (2006), "Structural optimization: a tool for evaluating seismic design procedures", Eng. Struct., 28(12), 1623-1633. https://doi.org/10.1016/j.engstruct.2006.02.014.   DOI
11 Medeiros, G.F. de and Kripka, M. (2014), "Optimization of reinforced concrete columns according to different environmental impact assessment parameters", Eng. Struct., 59, 185-194. https://doi.org/10.1016/j.engstruct.2013.10.045.   DOI
12 Li, J., Huo, Q., Li, X. and Shao, K.X. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos. Struct., 16(6), 577-593. https://doi.org/10.12989/scs.2014.16.6.577.   DOI
13 Luoa, Y., Li A. and Kang, Z. (2011), "Reliability-based design optimization of adhesive bonded steel-concrete composite beams with probabilistic and non-probabilistic uncertainties", Eng. Struct., 33, 2110-2119. https://doi.org/10.1016/j.engstruct.2011.02.040.   DOI
14 Luo, D., Zhang, Z. and Li, B. (2019), "Shear lag effect in steel-concrete composite beam in hogging moment", Steel Compos. Struct., 31(1), 27-41. https://doi.org/10.12989/scs.2019.31.1.027.   DOI
15 Munck, M. de, Sven de Sutter, S. de, Verbruggen, S., Tysmans, T., Coelho, R.F. (2015), "Multi-objective weight and cost optimization of hybrid composite-concrete beams", Compos. Struct., 134, 369-377. https://doi.org/10.1016/j.compstruct.2015.08.089.   DOI
16 Medeiros, G.F. and Kripka, M. (2017), "Modified harmony search and its application to cost minimization of RC columns", Adv. Comput. Design, 2(1), 1-13. DOI: https://doi.org/10.12989/acd.2017.2.1.001.   DOI
17 Mirza, O. and Uy, B. (2010), "Finite element model for the long-term behaviour of composite steel-concrete push tests", Steel Compos. Struct., 10(1), 45-67. https://doi.org/10.12989/scs.2010.10.1.045.   DOI
18 Molina-Moreno, F., Garcia-Segura, T., Marti, J.V. and Yepes, V. (2017), "Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms", Eng. Struct., 134, 205-216. https://doi.org/10.1016/j.engstruct.2016.12.042.   DOI
19 Paya-Zaforteza, I, Yepes V., Hospitaler. A and Gonzalez-Vidosa F. (2009), "$CO_2$ - Optimization of Reinforced Concrete Frames by Simulated Annealing", Eng. Struct., 31(7), 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034.   DOI
20 Park, H.S., Kwon, B., Shin, Y., Kim, Y., Hong, T. and Choi, S.W. (2013), "Cost and $CO_2$ emission optimization of steel reinforced concrete columns in high-rise buildings", Energies, 6(11), 5609-5624. https://doi.org/10.3390/en6115609.   DOI
21 Paya-Zaforteza, I., Yepes V., Gonzalez-Vidosa F. and Hospitaler. A. (2010), "On the Weibull cost estimation of building frames designed by Simulated Annealing", Meccanica, 45, 693-704. https://doi.org/10.1007/s11012-010-9285-0.   DOI
22 Pelletier, J.L and Vel, S.S (2006), "Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass", Comput. Struct. 84(29-30), 2065-2080. https://doi.org/10.1016/j.compstruc.2006.06.001.   DOI
23 Senouci, A.B. and Al-Ansari, M.S. (2009), "Cost optimization of composite beams using genetic algorithms", Adv. Eng. Softw., 40(11), 1112-1118. https://doi.org/10.1016/j.advengsoft.2009.06.001.   DOI
24 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, USA.
25 Reis, A. dos, Albuquerque, E.L., Torsani, F.L., Palermo JR.L. and Sollero, P. (2011), "Computation of moments and stresses in laminated composite plates by the boundary element method", Engineering Analysis with Boundary Elements, 35(1), 105-113. https://doi.org/10.1016/j.enganabound.2010.04.001.   DOI
26 Rosca, V.E., Axinte, E. and Teleman, E.C. (2012), "Practical optimization of composite steel and concrete girders", Buletinul Institutului Politehnic din Iasi, Sectia Constructii. Arhitectura, Tomul LVII, 1, 85-98.
27 Toma, S. and Maeda, J. (2011), "Optimum girder height and minimum sectional area of highway composite girder bridge", Hokuga.
28 Yangjun, L. and Li, A. (2012), "Design optimization of bonded steel-concrete composite beams", World J. Eng., 9(1), 23-30. https://doi.org/10.1260/1708-5284.9.1.23.   DOI
29 Topal, U., Dede, T. and Ozturk, H.T. (2017), "Stacking sequence optimization for maximum fundamental frequency of simply supported antisymmetric laminated composite plates using Teaching-learning-based Optimization", KSCE J. Civil Eng., 21(6), 2281-2288. https://doi.org/10.1007/s12205-017-0076-1.   DOI
30 VoB, S. (2001), "Meta-heuristics: The state of art", Lecture Notes in Computer Science, 2148, 1-23.
31 Yeo, D. and Potra, F.A. (2015), "Sustainable design of reinforced concrete structures through $CO_2$ emission optimization", J. Struct. Eng., 141(3), 1-7. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000888.
32 Zheng, S., Lou, H., Li, L., Li, Z. and Wang, W. (2011), "Optimization design of steel-concrete composite beams considering bond-slip effect", Adv. Mater. Res., 243-249, 379-382.   DOI
33 BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS - ABNT (2013), NBR 5884: Profile I structural steel welded by electric arc - General requirements, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
34 BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS-ABNT (2000), NBR 6120: Loads for the calculation of building structures, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
35 Yepes, V. and Medina, J.R. (2006), "Economic heuristic optimization for the heterogeneous fleet VRPHESTW", J. Transportation Eng., 132(4), 303-311. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(303).   DOI
36 Yepes, V., Gonzalez-Vidosa F, Alcala, J. and Villalba, P. (2012), "$CO_2$-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy", J. Comput. Civil Eng., 26(3), 378-386. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000140.   DOI
37 Yepes, V., Marti, J.V. and García-Segura, T. (2015), "Cost and $CO_2$ emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm", Automat. Constr., 49, 123-134. https://doi.org/10.1016/j.autcon.2014.10.013.   DOI
38 Zhou, W., Li, S., Huang, Z. and Jiang, L. (2016), "Distortional buckling of I-steel concrete composite beams in negative moment area", Steel Compos. Struct., 20(1), 57-70. https://doi.org/10.12989/scs.2016.20.1.057.   DOI
39 Camp, C.V. and Huq, F. (2013), "$CO_2$ and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm", Eng. Struct., 48, 363-372. https://doi.org/10.1016/j.engstruct.2012.09.004.   DOI
40 BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS TECNICAS - ABNT (2008), NBR 8800: Design of steel structures and mixed structures of steel and concrete of buildings, ABNT, Rio de Janeiro, Rio de Janeiro, Brazil.
41 Camp, C.V. and Assadollahi, A. (2013), "$CO_2$ and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm", Struct. Multidiscip. O., 48(2), 411- 426. https://doi.org/10.1007/s00158-013-0897-6.   DOI
42 Carbonell, A., Yepes, V. and Gonzalez-vidosa, F. (2011), "Comprehensive search for surroundings applied to the economic design of reinforced concrete vaults", International Magazine of Numerical Methods for Calculus and Design in Engineering, 27(3), 227-235.
43 Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141   DOI
44 Dede, T. (2018), "Jaya algorithm to solve single objective size optimization problem for steel grillage structures", Steel Compos. Struct., 26(2), 163-170. https://doi.org/10.12989/scs.2018.25.2.163.   DOI
45 Doltsinis, I. and Kang, Z. (2004), "Robust design of structures using optimization methods", Comput. Method. Appl. M., 193(23-26), 2221-2237. https://doi.org/10.1016/j.cma.2003.12.055.   DOI
46 Eskandari, H. and Korouzhdeh, T. (2016), "Cost optimization and sensitivity analysis of composite beam", Civil Eng. J., 2(2), 52-62.   DOI
47 Fabeane, R., Kripka, M. and Pravia, Z.M.C. (2017), "Composite bridges: Study of parameters of optimized design", Int. J. Bridge Eng., 5, 1-20.
48 Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201.   DOI
49 García-Segura, T. and Yepes, V. (2016), "Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, $CO_2$ emissions, and safety", Eng. Struct., 125, 325-336. https://doi.org/10.1016/j.engstruct.2016.07.012.   DOI
50 Geem, Z.W. (2010), "State-of-the-art in the structure of harmony search algorithm": Recent Advances In Harmony Search Algorithm", Studies in Computational Intelligence, 270, 1-10.
51 Geem, Z.W. and Sim, K. (2010), "Parameter-setting-free harmony search algorithm", Appl. Math. Comput., 217(8), 3881-3889. https://doi.org/10.1016/j.amc.2010.09.049.   DOI
52 Gilbert, P., Wilson, P., Walsh, C. and Hodgson, P. (2017), "The role of material efficiency to reduce $CO_2$ emissions during ship manufacture: A life cycle approach", Marine Policy, 75, 227-237. https://doi.org/10.1016/j.marpol.2016.04.003.   DOI
53 Gocal, J. and Dursova, A. (2012), "Optimization of transversal disposition of steel and concrete composite road bridges", Procedia Eng., 40, 125-130. https://doi.org/10.1016/j.proeng.2012.07.067.   DOI
54 Jones, M.T. (2003), Artificial Intelligence Application Programming, Charles River Media, Hingham, Massachussets, USA.
55 Kaveh, A., Bakhshpoori, T. and Barkhori, M. (2014), "Optimum design of multi-span composite box girder bridges using cuckoo search algorithm", Steel Compos. Struct., 17(5), 705-719. https://doi.org/10.1007/978-3-319-48012-1_3.   DOI