International Journal of Management Science
Vol 11, No 1, May 2005

Disassembly Scheduling for
Products with Assembly Structure’

Dong-Ho Lee™

Department of Industrial Engineering
Hanyang University, Seongdong—gu, Seoul 133-791, Korea

(Received Dec. 2004 ; Revised Mar. 2005 ; Accepted Mar. 2005)

ABSTRACT

Disassembly scheduling is the problem of determining the ordering and disassembly
schedules of used or end—of-life products while satisfying the demand of their parts or
components over a certain planning horizon. This paper considers the case of the assembly
product structure for the cost—based objective of minimizing the sum of purchase, setup,
inventory holding, and disassembly operation costs. To represent and solve the problem
optimally, this paper presents an integer programming model, which is a reversed form of
the multi—level lot sizing formulation. Computational experiments on an example derived
from the literature and a number of randomly generated test problems are done and the
results are reported.

Keywords: Disassembly Scheduling, Cost—based Objective, Integer Program, Environmental
Issues

1. INTRODUCTION

Environmental issues have been important for manufacturing firms due to
increasing legislation pressures to collect and upgrade their products in an envi-
ronmentally conscious way. Under such circumstances, a number of manufactur-
ing firms are paying considerable attention to remanufacturing, which can be de-
fined as an industrial process in which worn-out products are restored to like-new
condition [13]. Through a series of industrial processes, discarded products are

* This work was supported by the research fund of Hanyang University (HY-2003). This
support is greatly acknowledged.
** Email: leman@hanyang.ac.kr

63

64 - LEE

partially or completely disassembled, and usable parts are cleaned; refurbished,
and put into inventory. Then, the new product is reassembled from both old and
new parts in order to produce a unit fully equivalent and sometimes superior in
performance and expected lifetime to the original new product. See Guide [3] for
more details of remanufacturing.

Among the remanufacturing processes, this paper focuses on disassembly, in
which a used or end-of-life product is separated into its constituent parts, compo-
nents or other groupings with necessary sorting operations. In general, disassem-
bly can be applied to: (a) recover pure material fractions; (b) isolate hazardous
substances; and (c) separate reusable parts and/or subassemblies. Disassembly is
an important product recovery process since most products are disassembled be-
fore they are recycled, remanufactured, and even disposed.

There are a number of previous research articles on various disassembly
problems [9, 15, 17]. For example, see Johnson and Wang [5], Kang et al. [6],
Lambert [8], and Pnueli and Zussman [16] on disassembly planning. In general,
disassembly planning is the problem of determining the disassembly level and the
corresponding sequence of disassembly operations for a product. Here, the disas-
sembly level is concerned with the decision to continue or stop more disassembly
operations at each stage of disassembly process. Also, the end-of-life options, such
as reuse, remanufacturing, recycling, disposal etc., are determined in disassembly
planning.

Unlike a lot of research work on disassembly planning, not much work has
been done on disassembly scheduling, i.e., the problem of determining the order-
ing and the disassembly schedules of used or end-of-life products while satisfying
the demands of their parts or components. This problem is an important planning
problem in disassembly systems. In other words, by solving the problem, we can
determine which items (products or subassemblies), how many, and when to dis-
assemble products in order to satisfy the demand of their parts or components. In
general, disassembly scheduling can be regarded as a reverse material require-
ment planning (MRP) problem, since it is basically a reversed form of the ordi-
nary MRP problem [4]. However, due to the difference in the number of demand
sources, disassembly scheduling is more complicated than the ordinary MRP
problem. That is, in the assembly environment, parts/components converge to a
single demand source of the final product, while in the disassembly environment,
products diverge to its multiple demand sources of parts/components. See Bren-
nan et al. [2] for more details on the differences between assembly and disassem-
bly systems.

Several research articles consider the disassembly scheduling problem.

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 65

Gupta and Taleb [4] define and characterize the basic disassembly scheduling
problem for a single product type with assembly structure. They show that the
problem can be regarded as a reversed form of material requirement planning
(MRP) and then suggest an MRP-like algorithm. In the algorithm, the demand of
items at one level of the product structure is translated into an equivalent de-
mand of the items at the next level, and this is repeated from the part level to the
product level. Later, Taleb et al. [19] extend the basic model with the considera-
tion of parts commonality, i.e., general product structure, and suggest another
MRP-like algorithm for the objective of minimizing the number of products to be
disassembled. The extended problem is more complex than the basic one since the
parts commonality results in one or more alternative procurement sources for
each common part and hence creates dependencies between the components. For
this extended problem, Neuendorf et al. [14] suggest an algorithm based on the
Petri-net, and show using the example of Taleb et al. [19] that their algorithm
gives a better solution than the MRP-like algorithm. Also, Taleb and Gupta [18]
consider the case of multiple product types with parts commonality, and suggest a
two-phase heuristic. Recently, Lee et al. [12] suggest an integer programming
model for the basic case with resource capacity constraint, and Kim et al. [7] sug-
gest a linear programming relaxation heuristic for the case with multiple product
types and part commonality.

This paper focuses on the basic disassembly scheduling problem, i.e., a single
product type of assembly structure. In fact, the problem considered here is-the
same as that of Gupta and Taleb [4] except for the objective function. While no
explicit objective is considered in Gupta and Taleb [4], this paper considers vari-
ous costs, such as purchase, disassembly operation, inventory holding, and setup
costs. The extended version of the problem is more complex than the original one
because of its similarities to the traditional multi-level lot sizing problems. To
represent and solve the extended version of the problem, this paper presents an
integer programming model using the fact that the problem considered in this
paper can be regarded as a reverse form of the uncapacitated multi-level lot sizing
problem. See Bahl et al. [1] for a literature review on the multi-level lot sizing
problem. Computational experiments were done on the example (with additional
cost factors) of Gupta and Taleb [4] and a number of randomly generated prob-
lems, and the results are reported, especially on the cost considerations in disas-
sembly scheduling. '

This paper is organized as follows. The next section describes the problem
considered here in more detail, and the integer programming model is presented
in Section 3. In Section 4, test results on the examples derived from Gupta and

66 LEE

Taleb [4] and a number of randomly generated test problems are summarized.
Finally, Section 5 concludes the paper with a summary and discussion of future
research.

2. PROBLEM DESCRIPTION

To describe the disassembly scheduling problem considered in this paper, this
section begins with the definition of the disassembly product structure. Figure 1
shows an example, called the GT example in this paper, obtained from Gupta and
Taleb [4]. In the disassembly product structure, the root item represents the
product itself to be disassembled and each leaf item represents any item that can-
not be further disassembled. Also, a child item represents any item that has a
parent at the next lower level and a parent item is any item that has at least two
child items at the next higher level. Note that in the structure of assembly type,
each item has at most one parent, i.e., parts commonality is not allowed. In Fig-
ure 1, item 1 represents the root item, and items 6, 7, 8, 9, 10, 11, and 12 repre-
sent the leaf items. The numibers in parentheses represent the yield of the item
when its parent is disassembled, e.g., item 5 is disassembled into three units of
item 10, two units of item 11, and three units of item 12. Here, item 5 1s called
parent item, while items 10, 11, and 12 are called child items. Also, the disassem-
bly lead-time (DLT) is the time required to disassemble a certain parent item.

higher level f6H7H8H9W10H“H1W

@1 to @ 1@ of (z>] 1®)
l

(€]

wt IKC)

’
.
:
.
.
.
.
:
:
.
.
:
:
5
:
v

lower level DLT = 1

Figure 1. Disassembly product structure: an example

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 67

Now, the disassembly scheduling problem considered in this paper can be de-
scribed as follows: For a given disassembly product structure, the problem is to
determine the ordering schedule of the root item and the disassembly schedule of
all parent items while satisfying the demands of leaf items over a certain planning
horizon. The objective is to minimize the sum of purchase, setup, inventory hold-
ing, and disassembly operation costs. In particular, the time-varying purchase
costs of used products are considered in this paper since the purchase cost of used
or end-of-life products depend highly on the market situation. Here, the time-
varying cost implies that cost values are different according to different periods in
the planning horizon. When an item is disassembled, the equipment or tool re-
quired for that item has to be setup. This causes the item specific setup cost. It is
assumed that the setup cost for an item in a period occurs if at least one disas-
sembly operation for that item should be performed in that period. Also, the in-
ventory holding cost occurs when items are held in order to satisfy future demand.
Finally, the disassembly operation cost, which is proportional to direct labor time
or machine processing time, is the cost incurred while performing the disassembly
operation.

As stated earlier, the problem considered in this paper is the same as that of
Gupta and Taleb [4] except for the objective function. While no explicit objective
function 1s considered in Gupta and Taleb [4], this paper extends the problem by
considering the cost-based objective function that is generally used in ordinary
production planning problems. In fact, the disassembly scheduling problem is al-
ternatively called the reverse MRP problem, since it is basically a reversed form
of the regular MRP problem [4]. However, due to the difference in the number of
demand sources, the disassembly scheduling problem is considerably more com-
plicated than the MRP problem. That is, in the assembly environment, parts con-
verge to a single demand source, i.e., the final product, while in the disassembly
environment, parts diverge from the product to its multiple demand sources. See
Gupta and Taleb [4] for more details of the comparison of the assembly and the
disassembly environments.

It is assumed that the disassembly product structure is given from the corre-
sponding disassembly plan that specifies all parts/subassemblies and their disas-
sembly operations. Here, the disassembly plan is the solution of the disassembly
planning problem described earlier. Also, it is assumed that there is no shortage
of the root item (product). In other words, the required number of products can be
supplied whenever they are ordered. The other assumptions made in this problem,
which are similar to those of MRP, are as follows: (a) the planning horizon is di-
vided into discrete planning periods; (b) demands of leaf items are given and de-

63 LEE

terministic; (¢) backlogging is not allowed and hence demand should be satisfied
on time; (d) the disassembly process is perfect, and hence any defective parts re-
sulting from disassembly are not considered; (e) disassembly lead times with dis-
crete time scale are given and deterministic; and (f) inventory holding costs are
computed based on the end-of-period inventory.

Table 1. Data for the GT example
(a) Initial inventory

Item 1 2 3 4 5 6 7 8 9 10 11 12
Initial Inventory 1 6 2 45 12 10 30 55 20 120 90 80

(b) Scheduled receipts from external source

Ttom Period

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 9 0 2 0
2 5 7 1 9 0 0 0 0 0 0
3 2 4 8 0 0 0 6 0 2 0
4 0 0 15 2 4 8 0 0 0 0
5 1 9 0 2 3 0 0 0 0 0
6 0 15 0 0 2 4 0 0 0 0
7 0 8 0 0 0 0 0 0 0 0
8 1 6 0 2 1 2 0 0 0 0
9 7 1 9 0 0 0 7 2 8 0
10 3 15 2 4 8 0 0 2 5 1
11 0 0 -5 7 1 9 0 2 3 0
12 4 7 2 8 1 6 0 2 1 2

() Demand
leaf item _ Period

1 2 3 4 5 6 7 8 9 10
6 0 0 35 0 55 0 45 20 0 188
7 0 0 0 0 15 65 0 36 120 44
8 0 0 0 0 25 0 31 44 96 320
9 0 0 0 0 35 15 0 66 44 96
10 0 0 65 0 35 50 180 720 264 576
11 0 0 50 0 55 70 0 110 480 176
12 0 0 0 0 80 65 0 220 720 264

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 69

To explain the problem considered here more specifically, the additional data
for the GT example are summarized in Table 1. The planning horizon consists of
10 discrete periods. At the beginning of the planning horizon, there may be initial
inventories that results from remaining products, parts, and subassemblies in the
previous planning horizon (Table 1(a)). Table 1(b) shows the scheduled receipts
from external sources over the planning horizon, i.e., the items that are expected
to arrive from outside sources and not from disassembly. Finally, the demand of
leaf items at each planning period is summarized in Table 1{c). Now, using the
GT example, the problem considered here can be defined as the problem of deter-
mining the ordering schedule of root item 1 and the disassembly schedule (timing
and frequency of each disassembly operation) of root item 1 and parent items 2, 3,
4, and 5, while satisfying the demands of all leaf items 6, 7, 8, 9, 10, 11, and 12
with the objective of minimizing the sum of purchase, setup, inventory holding,
and disassembly operation costs.

3. INTEGER PROGRAMMING MODEL

This section presents an integer programming model that represents and solves
the problem considered in this paper optimally. As stated earlier, the integer pro-
gram suggested here is a reversed form of the uncapacitated multi-level lot sizing
problem. Here, the multi-level lot sizing problem is the problem of determining
delivery times and quantities of parts and subassemblies in order to satisfy the
demand of the final product [1]. Due to the divergent property explained earlier,
the disassembly scheduling problem considered here is more complicated than the
uncapacitated multi-level lot sizing problem that is known to be NP-hard. In ad-
dition, the time-variant cost factors, especially the setup costs with binary vari-
ables, described in the objective function of the formulation given below, make the
problem more complex. Therefore, it is easy to see that the problem considered
here is also NP-hard.

To formulate the problem, all items are numbered in the topological order
from bottom to top and from left to right, starting with number one for the root
item. That is, without loss of generality, all items are numbered by the integers 1,
2,-+ i, it + 1,---, I, where the index i; + 1 represents the first leaf item in the
disassembly product structure and hence the indices that are larger than i; repre-
sent leaf items. In the formulation, the following notations are used.

70 LEE

Parameters

C: time varying purchase cost of the product in period ¢ (¢t =1, 2,---, T)

h: inventory holding cost of one unit of item i for one period (=1, 2,---, I)

Dbi operation cost of disassembling one unit of item i 1 =1, 2,---, 1)

Si cost of setting up foritem i i =1, 2,--+, i1)

D; demandofitemiinperiodt(i=i+1,---,ITandt=1,2,---,T)

a; number of units (yield) of item j obtained by disassembling one unit of item ¢
¢=1,2,---,Lj=1,2,---,[,and i <j)

it scheduled receipt of item i in period ¢t (i =1, 2,---,fand ¢t =1, 2,---, T)

¢(i) parentofitemi(i=2,3,---,1)

L; disassembly lead time (DLT) of item i i =1, 2,---, i)

M an arbitrary large number

Iy initial inventory of item i (i=1, 2,---, I)

Decision variables

Z: purchase quantity of the product in period t (¢ =1, 2,---, T")

Xi amount of item i disassembled in period ¢t i=1, 2,---, 4 andt=1,2,---, T)

Yy = 1if the setup occurs for item i in period ¢, and O otherwise (¢ = 1,2,---, i1
andt=1,2,---, T).

Ii: inventory level of item i at the end of period ¢t ¢ =1, 2,---, land ¢t =1, 2,---, T)

Now, the integer program is given as follows.

Minimize ZC -Z, +ZZS Yn+ZZpL XLI+ZZh I,

i=1¢=1 i=1¢=1 i=1¢=1

subject to

L, = 1t—1+r1t+Zt'X1L forall t=1,2,---,T (1)
Ly = Liyq 41y + 0y Xogy g, — Xy forall i=2,3,--,4 andt=1,2,--,T (2)
I _It 1+r +a(0(i),i.X(0(i),t—l(')_Dit forall L:ll+ 1,"',[andt=l, 2,"',T (3)

X, <MY, forall i=1,2,,i andt=1,2,-,T (4
Z, 20 and integer forall ¢t=1,2,---, T (5)
X,, 20 and integer : forall i=1,2,--,i4 andt=1,2,---,T (6)
I, >0 and integer forall i=1,2,-~-,1I andt=12,---,T (7)

Y, €{0,1} forall 1=1,2,-~-,17 andt=1,2,-.-, T (8)

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 71

The objective function denotes the sum of purchase, setup, disassembly op-
eration, and inventory holding costs. Here, setup and disassembly operation costs
are incurred for the items representing the product and its subassemblies, i.e., i =
1, 2,---, i1, while inventory holding costs are incurred for all items, ie.,i=1, 2,:--,
I. Constraints (1), (2), and (3) express the inventory'ﬂow conservation that defines
the inventory level of item i at the end of period ¢t. Constraint (1) represents the
inventory balance of the root item. That is, at the end of each planning period, we
have inventory what we had the period before, increased by the scheduled receipt
and the purchased quantity and decreased by the quantity of the disassembled
product (the root item). Constraint (2) represents the inventory balance of the
subassemblies that should be disassembled further. Here, this constraint is the
same as (1) except that for each item, the quantity resulting from disassembling
its parent, multiplied by its yield from its parent, is used instead of the purchase
quantity (Z:). Also, the inventory balance of each leaf item is represented by con-
straint (3), which is different from (2) in that the demand requirement (D) is
used instead of the amount of items to be disassembled (Xi;). Constraint (4),
where M is an arbitrary large number, guarantees that a setup cost in a period is
incurred when there is at least one disassembly operation at that period. Finally,
the other constraint sets (5), (6), (7), and (8) represent the conditions of the deci-
sion variables. In particular, constraint (7) ensures that backlogging is not al-
lowed.

4. COMPUTATIONAL EXPERIMENTS

To compare the integer programming approach to the existing MRP-like algo-
rithm, a series of computational experiments were done and the results are re-
ported in this section. First, the GT examples with randomly generated cost val-
ues were solved and then the solutions are compared to those obtained from the
algorithm suggested by Gupta and Taleb [4], called the GT algorithm in this pa-
per. Note that additional cost values were added to the GT example (obtained
from Gupta and Taleb [4]) because the original has no specific objective function.
Second, the comparison is done more generally for a number of randomly gener-
ated test problems. In the test, CPLEX 6.5, a commercial integer programming
software package, was used to solve the formulated integer programs. Two per-
formance measures were employed to evaluate the results: (a) number of prob-
lems that the integer programming approach outperforms the GT algorithm; and

72 LEE

(b) percentage improvement of the integer programming approach over the GT
algorithm.

For the test on the GT examples, 10 problems with different cost values were
generated randomly. Here, purchase, setup, inventory holding, and disassembly
operation costs of the example problems were generated from DU(100, 200),
DU(500, 1000), DU(5,10), and DU(50, 100), respectively, where DU(a, b) denotes
the discrete uniform distribution with range [a, b]. In this test, the GT algorithm
and the program to generate integer programming formulations were coded in C
and the test was done on a personal computer with a Pentium processor operating
at 800 MHz clock speed.

Test results for the GT examples are summarized in Table 2. It can be seen
from the table that the integer programming approach gives always better solu-
tions than the GT algorithm. This is because CPLEX 6.5 solved all the example
problems optimally. The GT algorithm always gave the same solution for all the
example problems because it is based on demand, not on the cost factors. Note
that the different objective values of the GT algorithm result from the different
cost values of the example problems. As expected, the integer programming ap-
proach required longer CPU seconds than the GT algorithm. However, all the ex-
amples were solved optimally within 30 seconds.

Table 2. Test results for the GT example

IP! GT2
Problem % Improvement
Objective value CPU seconds Objective value CPU seconds

1 168383 8.76 169926 0.003 0.91
2 167352 52.17 170853 0.00 2.05
3 179284 4.3 182146 0.00 1.57
4 160262 50.39 161888 0.00 1.00
5 174157 24.36 176844 0.00 1.52
6 175681 32.5 179092 0.00 1.90
7 171204 18.1 173517 0.00 1.33
8 154351 4.58 155505 0.00 0.74
9 184519 6.29 185229 0.00 0.38
10 161432 6.3 162441 0.00 0.62

1 integer programming approach (solved by CPLEX 6.5)
2 the GT algorithm (Gupta and Taleb [4])
3 CPU second that is less than 0.001 seconds

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 73

To do the comparison more generally, 900 problems were generated randomly
i.e., 100 problems for each combination of the three levels of the number of items
(10, 20, and 30) and three levels of the number of periods (10, 15, and 20). In this
test, to avoid excessive computation times, CPLEX 6.5 was terminated when CPU
seconds reached 3600 seconds. In the case that CPLEX 6.5 was terminated due to
the time limit, the incumbent solutions were compared to those of the GT algo-
rithm. For each level of the number of items, 10 disassembly product structures
(and hence totally 30 structures) were randomly generated. In the disassembly
structures, the number of child items was generated from DU(2, 5) for each par-
ent item and the yields from the parent items were generated from DU(1, 3). For
each disassembly product structure, 10 problems with different data were gener-
ated for each level of the number of periods. In this test, the required data were
generated as follows: (a) disassembly lead times were set to 0, 1, and 2 with prob-
abilities 0.2, 0.7, and 0.1, respectively; (b) the initial inventory levels were gener-
ated from DU(0, 50) and DU(O, 10) for leaf (parts) and non-leaf (product or subas-
semblies) items, respectively; (c) scheduled receipt from external source for each
item in each period were set to 0 or DU(5, 10) with probabilities 0.3 and 0.7, re-
spectively; and (d) demand of each leaf item in each period was set to 0 or DU(50,
200) with probabilities 0.1 and 0.9, respectively.

The results on the randomly generated test problems are summarized in Ta-
ble 8. It can be seen from the table that the integer programming approach out-
performs the GT algorithm for all the test problems except for two with 30 items.
(In these problems, CPLEX 6.5 gave incumbent solutions due to the time limit.)
The overall average percentage improvement of the integer programming ap-
proach ranged from 0.62 to 2.35, which implies that the GT algorithm does not
work well for the cost-based objective function. Table 4 summarizes the CPU sec-
onds and the numbers of nodes generated by CPLEX 6.5. In the table, the CPU
seconds of the GT algorithm are not reported since they are always very short, i.e.
below 0.01 seconds for all the test problems. Computation times of the integer
programming approach depend highly on the problem data such as disassembly
structure, cost values, etc. For example, although most problems with 10 and 20
1items were solved within 60 seconds, the others (with 10 and 20 items) required
much longer computation times. Also, there was a distinct increase in CPU sec-
onds when the number of items increases to 30. In fact, we can see from the two
tables that the integer programming approach is useful up to problems with 20

items, especially when considering computation times.

74 LEE

Table 3. Test results for randomly generated test problems
(a) Problems with 10 items

Number of periods

Product
Structure 10 - 15 . 20 .

Nout % improve Nout % improve Nout % improve

1 10 2.68 (1.82)% 10 2.14 (1.07) 10 1.90 (0.62)

2 10 1.32 (0.85) 10 1.55 (0.57) 10 1.24 (0.46)

3 10 2.93(1.11) 10 2.26 (1.53) 10 2.05 (0.91)

4 10 3.25(1.41) 10 2.64 (1.43) 10 2.51(0.93)

5 10 1.64 (0.81) 10 1.76 (0.98) 10 1.63 (0.70)

6 10 2.18 (1.06) 10 2.40 (1.14) 10 2.02 (0.70)

7 10 2.22 (1.26) 10 2.30 (1.13) 10 2.28 (1.29)

8 10 2.60 (1.52) 10 2.77 (1.05) 10 2.16 (0.48)

9 10 2.57 (1.47) 10 1.76 (0.73) 10 1.90 (0.62)

10 10 2.17 (1.48) 10 2.20 (0.99) 10 1.68 (0.68)
Mean 10.0 2.35 (1.28) 10.0 2.18 (1.06) 10.0 1.94 (0.74)

T number problems that the IP approach outperforms the GT algorithm
t average and standard deviation (in parenthesis) of the percentage improvement of the IP
over the GT algorithm

(b) Problems with 20 items

Number of periods

Product

Structure 10 15 20

Noue % 1improvet Nout % improve Nout % improve

1 10 1.25 (0.79) 10 1.44 (0.86) 10 0.93 (0.44)

2 10 1.92 (1.46) 10 1.67 (0.62) 10 1.89 (0.72)

3 10 1.63 (0.80) 10 1.41 (0.51) 10 1.02 (0.35)

4 10 1.49 (0.73) 10 1.34 (0.49) 10 0.63 (0.27)

5 10 1.30 (0.52) 10 1.32 (0.52) 10 1.50 (0.68)

6 10 1.18 (0.79) 10 0.84 (0.53) 10 0.74 (0.38)

7 10 1.43 (0.57) 10 1.25 (0.48) 10 1.29 (0.39)

8 10 1.17 (0.70) 10 1.29 (0.40) 10 0.74 (0.44)

9 10 0.47 (0.25) 10 0.58 (0.27) 10 0.41 (0.16)
10 10 0.51 (0.16) 10 0.34 (0.21) 10 0.29 (0.15)
Mean 10.0 1.24 (0.68) 10.0 1.15 (0.49) 10.0 0.95 (0.40)

See the footnotes of (a).

(3) Problems with 30 items

Number of periods

Stracture 10 15 20

Nowt % improvet Nout % improve Nout % improve

1 10 0.67 (0.20) 10 0.51 (0.24) 10 0.36 (0.13)

2 10 0.93 (0.60) 10 0.71 (0.32) 10 0.79 (0.37)

3 10 1.12 (0.69) 10 0.89 (0.45) 10 0.98 (0.50)

4 10 1.09 (0.98) 10 0.63 (0.21) 10 0.77 (0.31)

5 10 0.57 (0.25) 10 0.50 (0.23) 10 0.40 (0.16)

6 10 1.50 (0.73) 10 0.78 (0.34) 10 1.14 (0.48)

7 10 0.86 (0.51) 10 0.96 (0.49) 10 0.67 (0.25)

8 10 0.70 (0.31) 9 0.05 (0.67) 10 0.43 (0.34)

9 10 0.55 (0.57) 10 0.58 (0.35) . 10 0.35 (0.16)
10 10 0.65 (0.20) 10 0.48 (0.21) 9 0.27 (0.20)
Mean 10.0 0.86 (0.50) 9.9 0.61 (0.35) 9.9 0.62 (0.29)

See the footnotes of (a).

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 75
Table 4. CPU seconds of the integer programming approach (using CPLEX 6.5)
(a) Problems with 10 items
N iod
Product — umbelr50f periods —
Structure - -
mean (min, max) NNt mean (min, max) NN mean (min, max) NN
1 0.0 (0.0, 0.2)* 8.4 0.1(0.1,0.1) 14.6 0.2 (0.1, 0.2) 22.1
2 3.4 (0.0, 32.8) 10183.6 17.8(0.1,175.7) 43299.3 28.0 (0.3, 266.2) 43573.7
3 0.1 (0.0, 0.2) 42.9 1.1(0.2,6.1) 1563.5 16.8 (0.4, 160.4) 18295.6
4 0.0 (0.0, 0.1) 13.1 0.1(0.1,0.1) 18.2 0.1(0.1,0.2) 20.2
5 0.0 (0.0, 0.0) 6.8 0.0 (0.0, 0.1) 13.2 0.1(0.1,0.1) 21.8
6 0.0 (0.0, 0.1) 22.6 0.2 (0.1, 0.3) 178.9 0.7 (0.2, 1.4) 608.5
7 0.0 (0.0, 0.0) 45 0.0 (0.0, 0.1) 8.3 0.1 (0.0, 0.1) 17.7
8 1.1 (0.1, 3.3) 1727.9 108.7 (0.2, 600.4) 130686.6 243.2 (5.3, 600.4) 264084.7
9 0.0 (0.0, 0.0) 2.5 0.0 (0.0, 0.0) 3.3 0.0 (0.0, 0.0) 4
10 0.0 (0.0, 0.0) 104 0.0(0.0,0.1) 10.5 0.1 (0.0, 0.1) 19.2
T Average number of nodes out of 10 problems (generated by the CPLEX 6.5)
* 0.0 implies that CPU second was below 0.1 seconds
(b) Problems with 20 items
Product — Numbe;of periods —
Structure - - -
mean (min, max) NNt mean (min, max) NN mean (min, max) NN
1 0.1(0.1,0.2) 17.1 1.4(0.2,11.8) 1845.2 0.6 (0.4, 2.4) 169.6
2 0.1(0.1,0.1) 17.3 0.3(0.2,0.4) 40.5 0.5 (0.3, 0.7) 58.7
3 26.5(0.1,173.5) 66866.3 13.6(0.7,126.0) 12643.1 64.7(1.9,327.5) 43683.9
4 0.1 (0.0, 0.1) 10.6 0.1 (0.1,0.2) 18.9 0.3 (0.2, 0.5) 35.3
5 0.1(0.1,0.2) 46.2 0.5(0.2,1.1) 175.1 2.2(0.5, 6.2) 819.9
6 0.1 (0.0, 0.1) 14.6 0.3 (0.1,0.4) 54.6 0.4 (0.2, 0.9) 60.1
7 0.1(0.1,0.2) 30.3 0.4 (0.3, 0.5) 75 1.0 (0.6, 1.5) 195.6
8 0.1(0.1,0.1) 14.7 0.3(0.2,0.4) 34.9 0.5 (0.4, 0.6) 43.6
9 12.8 (0.1, 126.5) 20099.2 1.4 (0.3, 4.0) 7778 162.7 (0.9, 1283.7) 104934
10 0.9 (0.2, 3.0) 918 24.4 (1.9,86.6) 15458.6 166.7 (2.5, 601.8) 80555.1
See the footnotes of (a).
(c) Problems with 30 items
Product - Num1b5er of periods -
Structure
mean (min, max) NNt mean (min, max) NN mean (min, max) NN
1 0.8 (0.2, 4.5) 455.4 5.5 (0.6, 20.6) 2257.4 44.6 (3.3, 371.8) 13177.5
2 0.2 (0.1, 0.5) 69.9 0.5 (0.3, 0.8) 127.5 3.2(0.7, 9.7) 1140.5
3 0.2 (0.1, 0.3) 47.7 1.8 (0.8, 4.1) 824.8 10.5 (2.1, 22.6) 3610.3
4 0.3(0.2,0.9) 213.2 2.9 (0.9, 9.9) 1388.9 30.6 (2.6, 80.7) 11769.4
5 0.5(0.3, 1.0) 240.4 54.7 (1.1, 528.9) 32435.7 119.8 (5.8, 350.0) 55411.8
6 2.5(1.0, 5.4) 1835.4 476.3 (152.1,601.0) 235612.3 601.7 (600.4, 611.4) 216802.6
7 1.0 (0.2, 6.7) 1210.7 13.5 (1.5, 52.2) 7656.6 374.9 (15.5, 600.6) 152462
8 11.1 (3.3,24.6) 8217.7 3600.3 (3600, 3600.5) 3249980.2 3600.5 (3600.4, 3600.7) 2332745.1
9 55.0 (0.7, 265.9) 77172.4 395.8(10.7,1740.9) 259528.8 718.3(490.2,1890.6) 269283.8
10 457.6 (4.8, 2033) 446268.9 843.5 (155.5, 3600.5) 418646.6 1521.8 (600.3, 3389.4) 353310

See the footnotes of (a).

76 LEE

5. CONCLUDING REMARKS

This paper considered disassembly scheduling, which is the problem of determin-
ing the ordering and the disassembly schedules of used or end-of-life products
while satisfying the demands of their parts/components over a given planning
horizon. A cost-based objective function, i.e., minimizing the sum of time-varying
purchase, setup, disassembly operation, and inventory holding costs, was consid-
ered for a single product type with assembly structure. To represent and solve the
problem optimally, an integer programming model was presented in this paper.
To compare the integer programming approach to the existing MRP-like algo-
rithm, computational experiments were done on the example derived from a lit-
erature (with additional cost values) and a number of randomly generated test
problems, and the results showed that the integer programming approach outper-
forms the existing MRP-like algorithm.

Because the problem considered in this paper is the most basic form of the
disassembly scheduling problem, this research can be extended in several ways.
First, it is needed to consider the case with general product structure, i.e., parts
commonality is allowed. As stated earlier, the parts commonality introduces one
or more alternative procurement sources for each common part and hence makes
the problem difficult to solve. For example, see Lee et al. [10]. Second, the re-
source capacity constraint should be considered as a practical concern [12]. Third,
it can be seen from the test results of this paper that the commercial software like
CPLEX fails to solve large sized problems, and hence it is needed to develop fast
heuristics that can give near optimal solutions. For example, see Lee and
Xirouchakis [11]. Finally, uncertainties such as stochastic demands, stochastic
lead-times, are important factors to be considered in disassembly scheduling.

REFERENCES

[1] Bahl, H. C., L. P. Ritzman, and J. N. D. Gupta, “Determining Lot Sizes and
Resource Requirements: a Review,” Operations Research 35 (1987), 329-345

[2] Brennan, L., S. M. Gupta, and K. N. Taleb, “Operations Planning Issues in
an Assembly/Disassembly Environment,” International Journal of Opera-
tions and Production Management 14 (1994), 57-67.

[3] Guide, Jr., V. D. R., “Production Planning and Control for Remanufactur-

(4]

(8]

[9]

[10]

DISASSEMBLY SCHEDULING FOR PRODUCTS WITH ASSEMBLY STRUCTURE 77

ing: Industry Practice and Research Needs,” Journal of Operations Man-
agement 18 (2000), 467-483.

Gupta, S. M. and K. N. Taleb, “Scheduling Disassembly,” International
Journal of Production Research 32 (1994), 1857-1886

Johnson, M. R. and M. H. Wang, “Economical Evaluation of Disassembly
Operations for Recycling, Remanufacturing and Reuse,” International
Journal of Production Research 36 (1998), 3227-3252.

Kang, J.-G., D.-H. Lee, P. Xirouchakis, and A. J. D. Lambert, “Optimal Dis-
assembly Sequencing with Sequence Dependent Operation Times based on
the Directed Graph of Assembly States,” Journal of the Korean Institute of
Industrial Engineers 28 (2002), 264-273.

Kim, H.-J., D.-H. Lee, P. Xirouchakis, and R. Zust, “Disassembly Schedul-
ing with Multiple Product Types,“ CIRP Annals ~ Manufacturing Technol-
ogy 52 (2003), 403-406.

Lambert, A. J. D., “Optimal Disassembly of Complex Products,” Interna-
tional Journal of Production Research 35 (1997), 2509-2523.

Lee, D.-H., J.-G. Kang, and P. Xirouchakis, “Disassembly Planning and
Scheduling: Review and Further Research,” Proceedings of the Institution of
Mechanical Engineers Part B: Journal of Engineering Manufacture 215
(2001), 695-710.

Lee, D.-H., H.-J. Kim, G.. Choi, and P. Xirouchakis, “Disassembly Schedul-
ing: Integer Programming Models,” Proceedings of the Institution of Me-
chanical Engineers Part B: Journal of Engineering Manufacture 218 (2004),
1357-1372.

Lee, D.-H. and P. Xirouchakis, “A Two-Stage Heuristic for Disassembly
Scheduling with Assembly Product Structure,” Journal of the Operational
Research Society 55 (2004), 287-297.

Lee, D.-H., P. Xirouchakis, and R. Zvst, “Disassembly Scheduling with
Capacity Constraints,” CIRP Annals — Manufacturing Technology 51 (2002),
387-390

Lund, R. T., “Remanufacturing,” Technology Review 87 (1984), 18-28.
Neuendorf, K.-P., D.-H. Lee, D. Kiritsis, and P. Xirouchakis. “Disassembly
Scheduling with Parts Commonality using Petri-Nets with Timestamps,”
Fundamenta Informaticae 47 (2001), 295-306.

O’Shea, B., S. S. Grewal, and H. Kaebernick, “State of the Art Literature
Survey on Disassembly Planning,” Concurrent Engineering: Research and
Application 6 (1998), 345-357.

Pnueli, Y. and E. Zussman, “Evaluating the End-of-Life Value of a Product

78

[17]

(18]

[19]

LEE

and Improving it by Redesign,” International Journal of Production Re-
search 35 (1997), 921-942.

Santochi, M., G. Dini, and F. Failli, “Computer Aided Disassembly Plan-
ning: State of the Art and Perspectives,” CIRP Annals - Manufacturing
Technology 51 (2002), 1-23.

Taleb, K. N. and S. M. Gupta, “Disassembly of Multiple Product Struc-
tures,” Computers and Industrial Engineering 32 (1997), 949-961.

Taleb, K. N., S. M. Gupta, and L. Brennan, “Disassembly of Complex Prod-
uct Structures with Parts and Materials Commonality,” Production Plan-
ning and Control 8 (1997), 255-269.

