• Title/Summary/Keyword: Size scaling

Search Result 275, Processing Time 0.021 seconds

Effects of Solvent Size on Microscopic Structures and Properties in Polymer Solutions

  • Li, Yunqi;Shi, Tongfei;An, Lijia
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.116-117
    • /
    • 2006
  • Increasing the solvent molecular size leads to shrinkage of the polymer chains and increase of the critical overlap concentrations. In addition, the dependency of $R_{g}$ on polymer concentration under normal solvent conditions and solvent molecular size is in good agreement with scaling laws. When the solvent molecular size approaches the ideal end-to-end distance of the polymer chain, an extra aggregation of polymer chains occurs, and the solvent becomes the so-called medium-sized solvent. When the size of solvent molecules is smaller than the medium size, the polymer chains are swollen or partially swollen. However, when the size of solvent molecules is larger than the medium size, the polymer coils shrink and segregate, enwrapped by the large solvent molecules.

  • PDF

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids (정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구)

  • Kim, Sang-Su;Gu, Bon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

A Real time Image Resizer with Enhanced Scaling Precision and Self Parameter Calculation (강화된 스케일링 정밀도와 자체 파라미터 계산 기능을 가진 실시간 이미지 크기 조절기)

  • Kim, Kihyun;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.99-102
    • /
    • 2012
  • An image scaler is a IP used in a image processing block of display devices to adjust image size. Proposed image scaler adopts line memories instead of a conventional method using a frame memory. This method reduced hardware resources and enhanced data precision by using shift operations that number is multiplied by $2^m$ and divided again at final stage for scaling. Also image scaler increased efficiency of IP by using serial divider to calculate parameters by itself. Parameters used in image scaling is automatically produced by it. Suggested methods are designed by Verilog HDL and implemented with Xilinx Vertex-4 XC4LX80 and ASIC using TSMC 0.18um process.

  • PDF

Design of the Structure for Scaling-Wavelet Neural Network Using Genetic Algorithm (유전 알고리즘을 이용한 스케일링-웨이블릿 복합 신경회로망 구조 설계)

  • 김성주;서재용;연정흠;김성현;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.25-28
    • /
    • 2001
  • RBFN has some problem that because the basis function isn't orthogonal to each others the number of used basis function goes to big. In this reason, the Wavelet Neural Network which uses the orthogonal basis function in the hidden node appears. In this paper, we propose the composition method of the actual function in hidden layer with the scaling function which can represent the region by which the several wavelet can be represented. In this method, we can decrease the size of the network with the pure several wavelet function. In addition to, when we determine the parameters of the scaling function we can process rough approximation and then the network becomes more stable. The other wavelets can be determined by the global solutions which is suitable for the suggested problem using the genetic algorithm and also, we use the back-propagation algorithm in the learning of the weights. In this step, we approximate the target function with fine tuning level. The complex neural network suggested In this paper is a new structure and important simultaneously in the point of handling the determination problem in the wavelet initialization.

  • PDF

A Rule-based Optimal Placement of Scaling Shifts in Floating-point to Fixed-point Conversion for a Fixed-point Processor

  • Park, Sang-Hyun;Cho, Doo-San;Kim, Tae-Song;Paek, Yun-Heung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.234-239
    • /
    • 2006
  • In the past decade, several tools have been developed to automate the floating-point to fixed-point conversion for DSP systems. In the conversion process, a number of scaling shifts are introduced, and they inevitably alter the original code sequence. Recently, we have observed that a compiler can often be adversely affected by this alteration, and consequently fails to generate efficient machine code for its target processor. In this paper, we present an optimization technique that safely migrates scaling shifts to other places within the code so that the compiler can produce better-quality code. We consider our technique to be safe in that it does not introduce new overflows, yet preserving the original SQNR. The experiments on a commercial fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible improvement on code size and speed for a set of benchmarks.

Conversion of Fisheye Image to Perspective Image Using Nonlinear Scaling Function (비선형 스케일링 함수를 이용한 어안 영상의 원근 변환)

  • Kim, Tae-Woo;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.117-121
    • /
    • 2009
  • The fisheye image acquired with a fisheye camera has wider field of view than a general use camera. But large distortion of the object in the image requires conversion of the fisheye image to the perspective image because of user's difficult perception. The existing Ishii's method[1] has the problem that the object can has sire and geometrical distortion in the transformed image because it uses equidistance projection. This paper presented a conversion technique of the fisheye image to the perspective image using sealing function. In the experiments, it was shown that our method reduced size and geometrical distortion by applying the scaling function.

Power-Minimizing DVFS Algorithm for a Video Decoder with Buffer Constraints (영상 디코더의 제한된 버퍼를 고려한 전력 최소화 DVFS 방식)

  • Jeong, Seung-Ho;Ahn, Hee-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1082-1091
    • /
    • 2011
  • Power-reduction techniques based on DVFS(Dynamic Voltage and Frequency Scaling) are crucial for lengthening operating times of battery powered mobile systems. This paper proposes an optimal DVFS scheduling algorithm for decoders with memory size limitation on display buffer, which is realistic constraints not properly touched in the previous works. Furthermore, we mathematically prove that the proposed algorithm is optimal in the limited display buffer and limited clock frequency model, and also can be used for feasibility check. Simulation results show the proposed algorithm outperformed the previous heuristic algorithms by 7% in average, and the performance of all algorithms using display buffers saturates at about 10 frame size.

An Anti-occlusion and Scale Adaptive Kernel Correlation Filter for Visual Object Tracking

  • Huang, Yingping;Ju, Chao;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2094-2112
    • /
    • 2019
  • Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.

An Online Scaling Method for Improving the Availability of a Database Cluster (데이터베이스 클러스터의 가용성 향상을 위한 온라인 확장 기법)

  • Lee, Chung-Ho;Jang, Yong-Il;Bae, Hae-Yeong
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.935-948
    • /
    • 2003
  • An online scaling method adds new nodes to the shared-nothing database cluster and makes tables be reorganized while the system is running. The objective is to share the workload with many nodes and increase the capacity of cluster systems. The existing online scaling method, however, has two problems. One is the degradation of response time and transactions throughput due to the additional overheads of data transfer and replica's condidtency. The other is and inefficient recovery mechanism in which the overall scaling transaction is aborted by a fault. These problems deteriorate the availability of shared-nothing database cluster. To avoid the additional overheads throughout the scaling period, our scalingmethod consists of twophases : a parallel data transfer phase and a combination phase. The parallel data transferred datausing reduces the size of data transfer by dividing the data into the number of replicas. The combination phase combines the transferred datausing resources of spare nodes. Also, our method reduces the possibility of failure throughout the scaling period and improves the availability of the database cluster.

Analysis of Fine Particle Transfer and Shear Strength Increase Using PFC in Permeation Grouting (PFC를 이용한 침투그라우팅시 미세입자의 이동 및 전단강도증가 해석)

  • Lee, Wan-Ho;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.49-58
    • /
    • 2007
  • Numerical experiments using a distinct element code (PFC3D) were carried out for the analysis of grout-material transfer in soil layers and also for the analysis of increase in mechanical strength after permeation grouting. For rapid analysis, up-scaling analysis in length scale was adopted, and the following observations were made from the numerical experiments. Firstly, the relative size of grout material with respect to the in situ soil particles controlled the transfer distance of the grout particles. When the size of grout particle was 0.2 to 0.25 times of the in situ soil particles, clogging of pore spaces among the in situ soil particles occurred, resulting in restricted propagation of grout particles. It was also found that there was a threshold value in the size of grout particle. Below the threshold value, the transfer distance of the grout particle did not increase with the decrease of particle size of the grout material. Secondly, the increase in cohesion and internal friction angle was observed in the numerical specimen with grouting treatment, but not with the untreated specimen.