234 SANGHYUN PARK et al : A RULE-BASED OPTIMAL PLACEMENT OF SCALING SHIFTS IN FLOATING-POINT...

A Rule-based Optimal Placement of Scaling Shifts in
Floating-point to Fixed-point Conversion for a Fixed-

point Processor

Sanghyun Park, Doosan Cho, Taesong Kim, and Yunheung Paek

Abstract—In the past decade, several tools have been
developed to automate the floating-point to fixed-
point conversion for DSP systems. In the conversion
process, a number of scaling shifts are introduced,
and they inevitably alter the original code sequence.
Recently, we have observed that a compiler can often
be adversely affected by this alteration, and
consequently fails to generate efficient machine code
for its target processor. In this paper, we present an
optimization technique that safely migrates scaling
shifts to other places within the code so that the
compiler can produce better-quality code. We
consider our technique to be safe in that it does not
introduce new overflows, yet preserving the original
SQNR. The experiments on a commercial fixed-point
DSP processor exhibit that our technique is effective
enough to achieve tangible improvement on code size
and speed for a set of benchmarks.

Index Terms—Compiler, Conversion, Floating-point,
Fixed-point, DSP

1. INTRODUCTION

Fixed-point processors are generally cheaper than
their floating-point counterparts. Thus, most high-
low-end DSP
processors since the priority is low energy and cost.

volume, systems use fixed-point

Manuscript received Sep 9, 2006; revised Nov. 9, 2006.

Software Optimizations and Restructuring Group School of Electrical
Engineering and Computer Science Seoul National University, #58 San
56-1, Sillim-dong, Kwanak-ku Seoul 151-744, Korea

E-mail : shpark@compiler.snu.ac kr

However, dynamic range and precision of a fixed-point
processor are often strictly limited [5]. As a result,
programming fixed-point processors is usually more
painful since programmers must spend much time to
maintain proper numeric accuracy and performance with
the limited dynamic range and precision. So, the
common practice is that programmers first employ
floating-point processors to verify their designs and
algorithms, and later implement the verified algorithms
on fixed-point processors by converting floating-point
data types into equivalent fixed-point ones.

As a first step in this floating-point to fixed-point
conversion (FFC) process, they must find the dynamic
range and precision needs of each variable in the code.
Based on their findings, they insert shift operations to
scale variables in the code. The integral part of this
conversion process is to decide adequate places where to
insert these scaling shifts because this decision deeply
affects the two key factors, the signal-to-quantization
noise ratio (SQNR) and overflow, which determine the
numeric accuracy of the resulting fixed-point code.
Therefore, in the FFC process, programmers must
perform rigorous static analysis or simulation to
compute exact run-time value ranges of all the variables,
which will be used to obtain the accurate dynamic
ranges and precisions for the variables.

As can be expected, processing the whole conversion
by hand would be quite a time-consuming and error-
prone task. According to empirical studies [1], the
manual process accounts for roughly a third of the total
implementation time. To relieve programmers from this
burdensome task, many researchers have developed
various FFC tools such as Autoscaler and FRIDGE [2, 6,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006

4] which automate the FFC process efficiently. However,
to the best of our knowledge, all these tools do not fully
consider detrimental effects of newly added scaling
shifts in the fixed-point code on compiler code
generation. Our recent experience reveals that such lack
of consideration often hinders the compiler from
matching composite instructions such as multiply-
add(MAC) or dot operations which are very efficient in
DSP processors. There is thus an imminent need to
eliminate the adverse effect of additional scaling shifts
that obfuscates compiler to generate good quality code.
In this paper, we present an efficient technique that
safely migrates scaling shifts to other places within the
code so that the compiler can produce better-quality
code. The rest of the paper is organized as follows. In
Section 2 we show that conventional FFC has an adverse
effect on code generation. In Section 3 we present our
optimization technique that transforms IR (intermediate
representation) using algebraic transformation. We show
the experimental results in Section 4 and conclude the
paper in Section 5.

II. MOTIVATION

To illustrate the need of our technique, consider the
ordinary floating-point C code segment in Fig. 1(a)
which implements a popular DSP filter, called IIR. We
used the Autoscaler tool [2] to convert this code into the
fixed-point one in Fig. 1(b) where we see that many
scaling shifts have been inserted during the conversion.
Fig. 1(c) shows the assembly code for the ZSP400
processor [7] generated directly from the code of Fig.
1(b). This compiler output suggests that the compiler
failed to utilize several nice operation patterns which can
be easily translated into some DSP-specific instructions.
In fact, as demonstrated in Fig. 1(d), the compiler should
be able to further reduce the code size if it could exploit
the ZSP mac/nmac instructions.

In this work, to address this issue, we use a method,
commonly known as algebraic transformations, which
helps the compiler to find a better chance of optimal
code generation by restructuring the original DAG IR
into a more desirable form. For algebraic
transformations, we define a set of rules according to the

properties of polynomial algebra, and use them to

235

w(n) = x(n)-a;; *w(n-1) - ap*w(n-2)
y(n) = big*w(n)+ b *w(n-1) + by,*w(n-2)
(a) Floating-point code for IIR Filter
w(n)=(x(n)-multf(a;,w(n-1))>>1
— multf(a;,w(n-2))>>2)<<3
y(n)=(multf(b;,w(n))>>1+multf(b;;,w(n-1))>>2

+ multf(b,, w(n-2)))<<1

(b) Fixed-point code for IIR Filter

mul.a r4, 16 shrar4, 1;
shrar0, 1; nmac.b r4, r6;
sub r2, r0; shrlar2, 2;
mul.ar5, r7; nmac.b r5, r7;
shra r0,2; shrlar2, 1;
sub r2, 10; mul.a 12, r8;
shlar2, 3; shra 16, 1;
mul.a 12,18, mac.a r6, r9;
shra 0, 1; shra 10, 2;
mul.b r6, 19; mac.ar7, rl0;
shrar2, 2; shlar0, 1;
add r0, r2;
shra r0, 1;
mac.ar7,rl0;
shla r0, 1;
(¢) Original code for (d) Improved code for
ZSP400 ZSP400

Fig. 1. IIR Filter codes.

(a) Original IR
Fig. 2. DAG IRs for IR Filter Code.

(b) Transformed IR

rewrite the expressions in the DAG. These rules guide
our compiler [9] to automatically transform a given IR
into some functionally-equivalent, yet more favorable
form for code generation. For example, our technique
may transform the original DAG IR in Fig. 2(a) into an
equivalent form like the one in Fig. 2(b), where the two
nodes 1 and 3 now become adjacent to each other. From
this new IR, it is trivial for a compiler to produce a mac

236 SANGHYUN PARK et al : A RULE-BASED OPTIMAL PLACEMENT OF SCALING SHIFTS IN FLOATING-POINT...

for the two nodes. The code in Fig. 1(d) in fact shows
the output assembly code of our compiler generated
from transformed IR, attaining 20% reduction in code

size.

II1. ALGEBRAIC TRANSFORMATION

In this section we discuss how

transformations can be applied to give a DAG IR so as

algebraic

to move the scaling shifts inserted as described in
Section 2.

1. Rewriting Rules for Transformation

Algebraic transformations have been used in many
domains such as compiler optimization [8] and high-
level synthesis [3]. Given an arbitrary DAG, finding its
optimal transformation subject to certain conditions is a
well-known intractable problem. So in practice, the
problem is approximated by a series of local pattern
matching problems where a predetermined set of
rewriting rules are applied subsequently to varied
subgraphs of the DAG in order to gradually form an
(near-)optimal structure. Note that there can be different
rewriting rules for one source pattern as shown in Fig. 3.
Although those rules bring the same effect on code
generation, they usually have different effects on the
SQNR (or precision) and overflow within the output
code. Therefore, when we define new rules, we must
predict their exact effects and exclude any rules with
undesirable effects.

Fig. 3. Rules-based Transformation Example :
n; and n," are positive integers such that n," > n,".

Fig. 4 shows all the rules defined for our work, each
of which contains scaling operations. Given a subject
DAG, the complexity of algebraic transformations grows
rapidly as the number of rewriting rules increases [8].
The number of rules is exponentially proportional to the
size of patterns in each rule. Therefore, as can be seen
from Fig. 4, the pattern is restricted to encompass the
operators at the distance of at most two from the scaling
shift at the center. The rationale for this is that composite
instructions are normally generated by the compiler from
at most three operations on neighboring nodes in the IR.

As displayed in Fig. 4, we divide the arithmetic
operators in a pattern into three classes: additive @,
multiplicative ® and scaling shift operators. In the Fig.,
the symbol () denotes an arbitrary arithmetic operator
including ® and ®. We also divide the patterns in the
Fig. roughly into three cases, depending on the relative
positions of these operators. The first case is when two
scaling shifts are adjacent, as shown in rule 1 of Fig. 4
(1). Ordinary shifts for other than scaling cannot always
be merged since they are usually used for masking their
operands. But, we find that any adjacent scaling shifts
can be safely merged without detrimental effects on the
SQNR and overflow. So, in our transformations, an
expression B=(A<<n,)>>n, would be simplified to
B=A<<(n,-ny), according to the rule 1.

The second cases can be found from Fig. 4 (2.1) to
(2.4), where a scaling shift is adjacent to an ® operator,
intervening between the operator and another one ®, If
the processor has a composite instruction consisting of
® and ®, we may want to move this scaling shift out of
this place by the four rules 2.1, 2.2, 2.3 and 2.4, thereby
allowing the compiler to generate the composite
instruction. Note that rules 2.1, 2.2 and 2.3 contain a
right shift, and rule 2.4 contains a left shift. We can see
that the two operators (® and ® are neighboring in the
target patterns, facilitating code generation of a
composite instruction [(®,®]. As an example, the
C=A®B>>n,) and C=(A®B)>>n, are
functionally-equivalent. So the first pattern can be

patterns

transformed to the second one by rule 2.2, or inversely
by rule 2.3. If B is (®, then we will apply rule 2.2. If C is
©), we will apply rule 2.3. As explained above with Fig.
3, rule 2.2 improves the SQNR while rule 2.3 does the

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 237

opposite. Lastly, the remaining ten rules in Fig. 4
correspond to the third case where a scaling shift is
adjacent to an @ operator and intervenes between @ and
(®. We can ecasily prove by well-known algebraic
properties that all rules perform valid transformations
between functionally-equivalent expression DAGs.

2. Priority-based Rule Application

In this subsection, we discuss how we apply the rules
in Fig. 4 to solve a local pattern matching problem in our
transformations. We use a conventional DAG pattern
matching algorithm for our problem [8]. To reduce the
complexity of the pattern matching, we prioritize all the
rules in the following sequence.

The priority is given according to the two metrics:
precision and computation. The precision is evaluated by
the values of SQNR, and the computation is by the
number of nodes in the pattern. When two rules are
simultaneously applicable, the one with the higher
priority will be used to transform the subject DAG. For
example, in Fig. 2(a), nodes 1 and 3 can be combined
and translated to a mac instruction if node 2 is removed
from between the two nodes via both rules 2.3 and 3.8.
However, in this case, we prefer 3.8 since it has a higher
priority over 2.3 as shown in Table 1.

Our pattern matching 1s priority-based peephole
optimization. This means that a rule is applied only
when its target pattern is found to be wseful for the
code generation on our fixed-point processor. The
usefulness is determined by either machine-independent
or machine-dependent properties. Each rule is iteratively
applied to the subject DAG until no more rules are
applicable.

Table 1. Priorities of Rules in Fig. 4.

i changes in precision and
priority rules .
computation
1 3.6 precision | , computation |
2 1 computation |
3 22,3.7,38 precision 1
4 2.1,32,33 no change
5 23,2.4,3.1,34,35 precision |

‘/
¢ .4 ‘ 3.2 ¢
<
. A A ¢ - A
PV NPy A) . ".\/
N R, M SQR G
m ehenged Sj‘ o -
7 N en
4 r

&
+
<

<
3.3 ¢ 3.4

)

0 &
-t A £ $

3 s F ¢
4 A
A
SRS WV S }g{
. [7 R A
SR gzn r NS " soR w0
n @ ‘zé v

LY N
24 ~ ¢
e 3.5) 13.6) <
o £
A
& 8 n- y ne A
o\ oo
Joseme SO up
o
¢
< .
3.7 [¢ 3.83

Fig. 4. Rewriting Rules.

IV. EXPERIMENTAL RESULTS

This section describes the results of a set of experiments
to illustrate the effectiveness of the proposed technique,
which is implemented for ZSP400 compiler backend. The
experimental input is a set of floating point code from
DSPstone. In order to isolate the impacts on performance
and code size purely from our techniques, two sets of
executables for the ZSP400 processor are produced for the
benchmark codes; ORGIN: floating point to fixed point
conversion with original Autoscaler and TRANS: floating
point to fixed point conversion with Autoscaler included
the algebraic transformation. With these two sets of
executables, we measured (1) cycle counts with simulator
and (2) code size with utility tool. The performance
improvements and code size reduction due to proposed
technique are measured in percentage, using the formula
((ORGIN-TRANS)/ORGIN)*100.

238 SANGHYUN PARK et al : A RULE-BASED OPTIMAL PLACEMENT OF SCALING SHIFTS IN FLOATING-POINT...

Percentage of Reduced Execution Time

25 - [e s o e

:?D RIRIN _ADADA

& & & & & & 2 s &
s § &
& £ e & & @dr;d} @;ﬁy r

Reduced Time (%)
3

&
& § &

& « o

Fig. 5. Reduced Execution Time.

Percentage of Reduced Code Size

Reduced Code Size (%)

Fig. 6. Reduced Code Size.

Fig. 5 reports the performance improvements, which
is based on the proposed technique. The graph shows
that there is up to 21.5% and average 12.7%
performance improvement by using our technique.

Fig. 6 demonstrates that we can reduce the code size
by helping the compiler to select DSP-specific
instructions. The graph show that there is up to 16.7%
and average 10% code size reduction. by using our

technique.

V. CONCLUSIONS

For DSP systems, there have been many techniques to
convert the floating-point to fixed-point. However,
existing techniques do not consider the side effect of
scaling shifts on code generation. Such ignorance often
raises a critical performance issue on fixed-point DSP
processors because these processors mostly aim to gain
the performance via DSP-specific CISC instructions. In
this paper, we propose a rule-based algebraic
transformation to alleviate the side effect of scaling
shifts. As a special case, we applied our transformation
technique for ZSP400 processor using priority-based
algorithm. We observed substantial improvement on

code size and execution time.

ACKNOWLEDGMENTS

This work was partially funded by the MIC(Ministry
of Information and Communication), Korea, under the
ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information
Technology Assessment) (IITA-2005-C1090-0502-
0031), KRF contract DO0191, MIC under Grant A1100-
0501-0004 and IT R&D Project, the Korea Ministry of
Science and Technology(MoST) Grant
M103BY010004-05B2501-00411, IP/SoC
promotion group of Seoul R&BD Program in 2006.

under
Nano

REFERENCES

[1] T. Grotker, E. Multhaup, and O.Mauss, “Evaluation
of HW/SW Tradeoffs Using Behavioral Synthesis,”
ICSPAT 96, Boston, October 1996.

[2] S. Kim, K. Kum, and S. Wonyong, “Fixed-Point
Optimization Utility for C and C++ Based Digital
Signal Processing Programs,” IEEE Transactions on
Circuits and Systems 11, 45(11), November 1998.

[31 A. Chandrakasan, et. al., “Optimizing Power Using
Transformations,” /EEE Transactions on CAD, Vol.
14, No. 1, 12-31, 1995.

[4] C. Shi and R. Brodersen, “Automated Fixed-point
Data-type Optimization Tool for Signal Processing
and Communication Systems,” [n Design
Automation Conference, 2000.

[5] P. Lapsely, J. Bier, A. Shoham and E. Lee, “DSP
Processor Fundamentals: Architectures and
Features,” IEEE Press 1997.

[6] H. Keding, M. Willems, M. Coors, and H. Meyr,
“FRIDGE: A Fixed-Point Design And Simulation
Environment,” Design, Automation and Test in
Europe, 1998.

[7] ZSP 400 Digital Signal Processor Technical Manual,
http://www.zsp.com.

[8] S. Muchinick, Advanced Compiler Design &
Implementation, Morgan Kaufmann, 1997.

[9] M. Ahn and Y. Paek, “A New ADL-based Compiler
for Embedded Processor Design,” Technical Report,
SO&R Research Group, Seoul National University,
2005.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.6, NO.4, DECEMBER, 2006 239

Sanghyun Park received the B.S.
degree in electrical engineering from
Seoul National University, Seoul,
Korea, in 2004. He is in Ph.D course
in the same university. He was a

Visiting Researcher for six months at
University California, Irvine, in 2005. His current
interestes lie in the interface between the compiler and
architecture, and low power design methodology,
especially for leakage power reduction.

Doosan Cho received the B.S.

degree in digital information
engineering from Hankuk University
of Foregin Studies, Korea, in 2001,

M.S. degree in electrical engineering

from Korea University in 2003.
Since 2003, he has been work on Software Optimization
and Restructuring Lab. in Seoul National University, as
an Ph.D student. His current research interests are design
space exploration of memory system for application
specific domain processors and retargetable optimizing
compiler.

Taesong Kim received the B.S.
degree in information and computing
science from Ease China Normal
University, Shanghai, China, in 2003,
M.S. degree in electrical engineering

ﬁi.‘ i from Seoul National University in

2006. Since 2006, he has been work on PULSUS
Technology Inc. His current research interests are audio
processing and fixed point programming,

Yunheung Paek earned a B.S. and
an M.S. in Computer Engineering

from Seoul National University.
Then, he graduated from the Korea
3rd Military Academy to complete

it

service. He gained a national scholarship from the

6-month's mandatory military
Ministry of Education and entered the University of
lilinois at Urbana-Champaign (UTUC) where he received
a Ph.D. degree in Computer Science. In the spring of
2003, he joined SNU as an associate professor in the
School of Electrical Engineering. Before he came to
SNU, he had been in the Department of Electrical
Engineering at Korea Advanced Institute of Science and
Technology (KAIST) as an associate professor for one
year and an assistant professor for two and a half years.
His current research interests are embedded software,
embedded system development tools, retargetabel
compiler, and MPSoC.

