DOI QR코드

DOI QR Code

An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids

정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구

  • 김상수 (한국과학기술원, 기계공학과) ;
  • 구본기 (한국과학기술원 기계공학과 기계기술연구소)
  • Published : 2002.04.01

Abstract

Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Keywords

References

  1. Dulcks, Th. and Juraschek, R., 1999, 'Electrospray as an Ionization Method for Mass Spectrometry,' J. Aerosol Sci., Vol. 30, pp. 927-943 https://doi.org/10.1016/S0021-8502(98)00781-2
  2. Smyth, W. F., 1999, 'The Use of Electrospray Mass Spectrimetry in the Detection and Determination of Molecules of Biological Significance,' Trends in Anal. Chem., Vol. 18, pp. 335-346 https://doi.org/10.1016/S0165-9936(99)00107-7
  3. Kaufman, S. L., 1998, 'Analysis of Biomolecules using Electrospray and Nanoparticle Methods: The Gas-Phase Electriphoretic Mobility Molecular Analyzer (GEMMA),' J. Aerosol Sci., Vol. 29, pp. 537-552 https://doi.org/10.1016/S0021-8502(97)00462-X
  4. Bailey, A. G., 1988, Electrostatic Spraying of Liquids, Research studies press, Great Britain
  5. Smith, D.P., 1986, 'The Electrohydrodynamic Atomization of Liquids,' IEEE Trans. Ind. Applics., Vol.IA-22, pp. 527-535 https://doi.org/10.1109/TIA.1986.4504754
  6. Cloupeau, M. and Prunet-Foch, B., 1989, 'Electrostatic Spraying of Liquids in Cone-jet Mode,' J. Electrostatics, Vol. 22, pp. 135-159 https://doi.org/10.1016/0304-3886(89)90081-8
  7. Fernandez de la Mora, J. and Loscertales, I. G., 1994, 'The Current Emitted by Highly Conducting Taylor Cones,' J. Fluid Mech., Vol. 260, pp. 155-184 https://doi.org/10.1017/S0022112094003472
  8. Chen, D. R., Pui, D. Y. H. and Kaufman, S. L., 1995, 'Electrospraying of Conducting Liquids for Monodisperse Aerosol Generation on the 4 nm to $1.8 {\mu}m$ Diameter Range,' J. Aerosol Sci., Vol. 26, pp. 963-977 https://doi.org/10.1016/0021-8502(95)00027-A
  9. Chen, D.R. and Pui, D.Y.H., 1997, 'Experimental Investigation of Scaling Laws for Electrospraying: Dielectric Constant Effect,' Aerosol Sci. Technol., Vol. 27, pp. 367-380 https://doi.org/10.1080/02786829708965479
  10. Ku, B.K and Kim, S.S., 2001, 'Characteristics of electrospraying of glycerol: viscosity effect,' Abstracts of 2nd Asian Aerosol Conference, July 1-4, Pusan, Korea, pp. 407-408
  11. 구본기, 김상수, 김유동, 이상용, 2001, '냉각법 및 영상 처리기법을 이용한 서브마이크론 정전 분무 액적의 크기분포 측정,' 대한기계학회논문집 B, 제25권, 제10호
  12. Ganan-Calvo, A.M., 1997a, 'Cone-Jet Analytical Extension of Taylor's Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying,' Phys. Rev. Lett., Vol. 79, pp. 217-220 https://doi.org/10.1103/PhysRevLett.79.217
  13. Hartman, R. P. A., Brunner, D. J., Camelot, D. M. A., Marijnissen, J. C. M. and Scarlett, B., 2000, 'Jet Break-up in Electrohydrodynamic Atomization in the Cone-jet Mode,' J. Aerosol Sci., Vol. 31, pp. 65-95 https://doi.org/10.1016/S0021-8502(99)00034-8
  14. Shtyrlin, A.F. (1995) State of the art and future prospects of colloidal electric thrusters. Proceedings of the 24th International EP Conference (Moscow, Russia), IEPC pp. 97-120
  15. Martinez-Sanchez, M. and Pollard, J.E., 1998, 'Spacecraft Electric Propulsion-an Overview,' J. Propulsion and Power, Vol. 14, pp. 688-699 https://doi.org/10.2514/2.5331
  16. Krohn, V. E., 1961, 'Liquid metal droplets for heavy particle propulsion,' In Electrostatic Propulsion (Edited by Langmuir, D.B. et al.), pp. 73-80. Academic Press, New York (Series Progress in Astronautics and Rocketry)
  17. Kidd, P. W., 1968, 'Parametric Studies with a Single Needle Colloid Thruster,' J. Spacecraft and Rockets, Vol. 5, No. 9, pp. 1034-1039 https://doi.org/10.2514/3.29417
  18. Perel, J., Mahoney, J.F., Moore, R.D. and Yahiku, A.Y., 1969, 'Research and Development of a Charged-Particle Bipolar Thruster,' AIAA J., Vol. 7, pp. 507-511 https://doi.org/10.2514/3.5137
  19. Zeleny, J., 1917, 'Instability of electrified liquid surfaces,' Phys Rev., Vol. 10, pp. 1-6 https://doi.org/10.1103/PhysRev.10.1
  20. Fernandez de la Mora, J., Navascues, J., Fernandez, F. and Rosell-Llompart, J., 1990, 'Generation of Submicron Monodisperse Aerosols in Electrosprays,' J. Aerosol. Sci., Vol. 21(suppl. 1), S673-S676 https://doi.org/10.1016/0021-8502(90)90332-R
  21. Rosell-Llompart, J. and Fernandez de la Mora, J., 1994, 'Generation of Monodisperse Droplets 0.3 to $4 {\mu}m$ in Diameter from Electrified Cone-jets of Highly Conducting and Viscous Liquids,' J. Aerosol Sci., Vol. 25, pp. 1093-1119 https://doi.org/10.1016/0021-8502(94)90204-6
  22. Fernandez de la Mara, J., 1999, Private Communication
  23. Riddick, J. A. and Bunger, W. B., 1970, Organic Solvents: Physical Properties and Methods of Purification, 3rd Ed., John Wiley and Sons, New York
  24. Saville, D. A., 1971, 'Stability of Electrically Charged Viscous Cylinders,' Phys. Fluids, Vol. 14, No. 6, pp. 1095-1099 https://doi.org/10.1063/1.1693569
  25. Mestel, A.J. (1996) Electrohydrodynamic Stability of a Highly viscous Jet. J. Fluid Mech. 312, 311 https://doi.org/10.1017/S0022112096002029
  26. Tang, K. and Gomez, A., 1995, 'Generation of Monodisperse Water Droplets from Electrosprays in a Corona-Assisted Cone-Jet Mode,' J. Colloid Interface Sci., Vol. 175, pp. 326-332 https://doi.org/10.1006/jcis.1995.1464
  27. Ganan-Calvo, A.M., Davila J. and Barrero, A., 1997, 'Current and Droplet Size in the Electrospraying of Liquids: Scaling Laws,' J. Aerosol Sci., Vol. 28, pp. 249-275 https://doi.org/10.1016/S0021-8502(96)00433-8
  28. Ganan-Calvo, A.M. (1994) The Size and Charge of Droplets in the Electrospraying of Polar Liquids in Cone-Jet Mode and the Minimum Droplet Size. J. Aerosol Sci. 25 (Suppl. 1), S309 https://doi.org/10.1016/0021-8502(94)90384-0
  29. Chandrasekhar, S. (1981) Hydrodynamic and hydromagnetic stability, section 111, Dover, New York