• Title/Summary/Keyword: Sinusoidal pulse width modulation

Search Result 77, Processing Time 0.023 seconds

A study on Photovoltaic System to Considers a Solar Position Tracker for Air Conditioner a Clinic room (병실 냉.난방장치용 태양 위치 추적기를 이용한 태양광 발전시스템에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1355-1362
    • /
    • 2007
  • In this paper, these setting can be useful in the microprocessor and sensor that designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, this is compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and that is composed an power conversion system with boost converter and voltage source inverter. This device can be used to the constant voltage control method for maximum power point tracking in boost converter control. Experiment Results is shown that using a SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF

Optimized Space Vector Pulse-width Modulation Technique for a Five-level Cascaded H-Bridge Inverter

  • Matsa, Amarendra;Ahmed, Irfan;Chaudhari, Madhuri A.
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.937-945
    • /
    • 2014
  • This paper presents an optimized space vector pulse-width modulation (OSVPWM) technique for a five-level cascaded H-bridge (CHB) inverter. The space vector diagram of the five-level CHB inverter is optimized by resolving it into inner and outer two-level space vector hexagons. Unlike conventional space vector topology, the proposed technique significantly reduces the involved computational time and efforts without compromising the performance of the five-level CHB inverter. A further optimized (FOSVPWM) technique is also presented in this paper, which significantly reduces the complexity and computational efforts. The developed techniques are verified through MATLAB/SIMULINK. Results are compared with sinusoidal pulse-width modulation (SPWM) to prove the validity of the proposed technique. The proposed simulation system is realized by using an XC3S400 field-programmable gate array from Xilinx, Inc. The experiment results are then presented for verification.

Current Control for an AFE Rectifier Using Space Vector PWM (공간벡터변조방식에 의한 AFE정류기의 전류제어)

  • Jeon, Cheol-Hwan;Hur, Jae-Jung;Yoon, Kyoung-Kuk;Yoo, Heui-Han;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.498-503
    • /
    • 2019
  • Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

An Efficiency improvement of Sinusoidal Converter for Power Factor Corection (역률 보정을 위한 정현 컨버터의 효율개선)

  • 서재호;이희승
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.432-435
    • /
    • 1997
  • This Paper proposes a novel sinusoidal converter which improves input power factor and input current waveform without any complicated switching modulation such as a pulse width modulation or a complicated feed-back control. It is composed of a full bridge diode, a pair of capacitors, a pair of inductors and a pair of switching devices. The configuration and control strategy are both simple however, the sinusoidal converter effectively reduces reactive power and hamonics included in a input line current. Excellent behavior of the proposed converter is verified by theoretical analysis and experimental results.

  • PDF

A Novel SVPWM Strategy Considering DC-link Balancing for a Multi-level Voltage Source Inverter

  • Kim, Rae-Young;Lee, Yo-Han;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.159-164
    • /
    • 1998
  • This paper proposes a SVPWM (space vector pulse width modulation) strategy for a multi-level voltage source inverter. This strategy is easily implemented as SPWM (sinusoidal pulse width modulation) and has the same DC-link voltage utilization as general SVPWM. The method to keep the voltage balancing of DC-link also is proposed by the analysis model of DC-link voltage fluctuation. The usefulness of the proposed SVPWM is verified through the simulation.

  • PDF

Programmable Ministep Drive

  • Thedmolee, Sunhapitch;Pongswatd, Sawai;Kummool, Sart;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2274-2277
    • /
    • 2003
  • A cylindrical permanent magnet inside the four-phase permanent magnet (PM) stepping motor is employed as the rotor. The stator has four teeth around, which its coils are wound. The mode of excitation can be classified into 3 modes: single-phase excitation, two-phase excitation and ministep excitation. The ministep drive is a method to subdivide one step into several small steps by means of electronics. The paper presents the programmable ministep technique drive. This technique decodes the results obtained from the counter to locate the data in Read Only Memory (ROM). The Sinusoidal Pulse Width Modulation (SPWM) is transformed to binary file and saved to the ROM. The experiment is performed with the four-phase PM stepping motor and drives from a two-phase programmable sinusoidal ministep signal, instead of square wave. The results show that the performances of the proposed programmable ministep technique drive have high efficiency, smooth step motion, and high speed response. Moreover, the resolution of sinusoidal ministep signal can be controlled by the input frequency (f command).

  • PDF

Fast Voltage-Balancing Scheme for a Carrier-Based Modulation in Three-Phase and Single-Phase NPC Three-Level Inverters

  • Chen, Xi;Huang, Shenghua;Jiang, Dong;Li, Bingzhang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1986-1995
    • /
    • 2018
  • In this paper, a novel neutral-point voltage balancing scheme for NPC three-level inverters using carrier-based sinusoidal pulse width modulation (SPWM) method is developed. The new modulation approach, based on the obtained expressions of zero sequence voltage in all six sectors, can significantly suppress the low-frequency voltage oscillation in the neutral point at high modulation index and achieve a fast voltage-balancing dynamic performance. The implementation of the proposed method is very simple. Another attractive feature is that the scheme can stably control any voltage difference between the two dc-link capacitors within a certain range without using any extra hardware. Furthermore, the presented scheme is also applicable to the single-phase NPC three-level inverter. It can maintain the neutral-point voltage balance at full modulation index and improve the voltage-balancing dynamic performance of the single-phase NPC three-level inverter. The performance of the proposed strategy and its benefits over other previous techniques are verified experimentally.

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

A Study on the PWN Inverter for the Design of UPS (무정전 전원(UPS)설계를 위한 PWN 인버터에 관한 연구)

  • 이성백;구용회;이종규
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.2 no.2
    • /
    • pp.59-63
    • /
    • 1988
  • In a fixed AC power source the PWM techniques were used to vary the voltage and the fundamental frequency. The conventional PWM techniques due to the problem of commutation number and filter size have been studied the PWM output waveforms which applied the motor drive. However in this paper, the carrier frequency with sinusoidal PWM waveform is modulated from 10(KHz) to 45(KHz) using termination devices with high - speed switching capacity and applying LPF(Low Pass Filter) with small capacity to output of inverter and the PAM(Pulse Amplitude Modulation)is obtained. Considering the property of the speed and the control, the sinusoidal PWM control circuit was composed of the microprocessor and analog circuit. In experment result, the system properties are study on the sinusoidal voltage waveform with modulation index changing from 0.6 to 1.0.

  • PDF

Multilevel Inverter to Reduce Common Mode Voltage in AC Motor Drives Using SPWM Technique

  • Renge, Mohan M.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • In this paper, an approach to reduce common-mode voltage (CMV) at the output of multilevel inverters using a phase opposition disposed (POD) sinusoidal pulse width modulation (SPWM) technique is proposed. The SPWM technique does not require computations therefore, this technique is easy to implement on-line in digital controllers. A good tradeoff between the quality of the output voltage and the magnitude of the CMV is achieved in this paper. This paper realizes the implementation of a POD-SPWM technique to reduce CMV using a five-level diode clamped inverter for a three phase induction motor. Experimental and simulation results demonstrate the feasibility of the proposed technique.