• Title/Summary/Keyword: Singular point

Search Result 213, Processing Time 0.025 seconds

Numerical Computation of Dynamic Stress Intensity Factors Based on the Equations of Motion in Convolution Integral (시간적분형 운동방정식을 바탕으로 한 동적 응력확대계수의 계산)

  • Sim, U-Jin;Lee, Seong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.904-913
    • /
    • 2002
  • In this paper, the dynamic stress intensity factors of fracture mechanics are numerically computed in time domain using the FEM. For which the finite element formulations are derived applying the Galerkin method to the equations of motion in convolution integral as has been presented in the previous paper. To assure the strain fields of r$^{-1}$ 2/ singularity near the crack tip, the triangular quarter-point singular elements are imbedded in the finite element mesh discretized by the isoparametric quadratic quadrilateral elements. Two-dimensional problems of the elastodynamic fracture mechanics under the impact load are solved and compared with the existing numerical and analytical solutions, being shown that numerical results of good accuracy are obtained by the presented method.

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

ON SINGULAR INTEGRAL OPERATORS INVOLVING POWER NONLINEARITY

  • Almali, Sevgi Esen;Uysal, Gumrah;Mishra, Vishnu Narayan;Guller, Ozge Ozalp
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.483-494
    • /
    • 2017
  • In the current manuscript, we investigate the pointwise convergence of the singular integral operators involving power nonlinearity given in the following form: $$T_{\lambda}(f;x)={\int_a^b}{\sum^n_{m=1}}f^m(t)K_{{\lambda},m}(x,t)dt,\;{\lambda}{\in}{\Lambda},\;x{\in}(a,b)$$, where ${\Lambda}$ is an index set consisting of the non-negative real numbers, and $n{\geq}1$ is a finite natural number, at ${\mu}$-generalized Lebesgue points of integrable function $f{\in}L_1(a,b)$. Here, $f^m$ denotes m-th power of the function f and (a, b) stands for arbitrary bounded interval in ${\mathbb{R}}$ or ${\mathbb{R}}$ itself. We also handled the indicated problem under the assumption $f{\in}L_1({\mathbb{R}})$.

TOPOLOGICAL CONJUGACY OF DISJOINT FLOWS ON THE CIRCLE

  • Cieplinski, Krzysztof
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.333-346
    • /
    • 2002
  • Let $F={F^v:S^1->S^1,v\in\; V$ and $g={G^v:S^1->S^1,v\in\; V$ be disjoint flows defined on the unit circle $S^1$, that is such flows that each their element either is the identity mapping or has no fixed point ((V, +) is a 2-divisible nontrivial abelian group). The aim of this paper is to give a necessary and sufficient codition for topological conjugacy of disjoint flows i.e., the existence of a homeomorphism $\Gamma:S^1->S^1$ satisfying $$\Gamma\circ\ F^v=G^v\circ\Gamma,\; v\in\; V$$ Moreover, under some further restrictions, we determine all such homeomorphisms.

A TYPE OF MODIFIED BFGS ALGORITHM WITH ANY RANK DEFECTS AND THE LOCAL Q-SUPERLINEAR CONVERGENCE PROPERTIES

  • Ge Ren-Dong;Xia Zun-Quan;Qiang Guo
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.193-208
    • /
    • 2006
  • A modified BFGS algorithm for solving the unconstrained optimization, whose Hessian matrix at the minimum point of the convex function is of rank defects, is presented in this paper. The main idea of the algorithm is first to add a modified term to the convex function for obtain an equivalent model, then simply the model to get the modified BFGS algorithm. The superlinear convergence property of the algorithm is proved in this paper. To compared with the Tensor algorithms presented by R. B. Schnabel (seing [4],[5]), this method is more efficient for solving singular unconstrained optimization in computing amount and complication.

BRILL-NOETHER THEORY FOR RANK 1 TORSION FREE SHEAVES ON SINGULAR PROJECTIVE CURVES

  • Ballico, E.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.359-369
    • /
    • 2000
  • Let X be an integral Gorenstein projective curve with g:=pa(X) $\geq$ 3. Call $G^r_d$ (X,**) the set of all pairs (L,V) with L$\epsilon$Pic(X), deg(L) = d, V $\subseteq$ H^0$(X,L), dim(V) =r+1 and V spanning L. Assume the existence of integers d, r with 1 $\leq$ r$\leq$ d $\leq$ g-1 such that there exists an irreducible component, , of $G^r_d$(X,**) with dim($\Gamma$) $\geq$ d - 2r and such that the general L$\geq$$\Gamma$ is spanned at every point of Sing(X). Here we prove that dim( ) = d-2r and X is hyperelliptic.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY

  • Cao, Linfen;Wang, Xiaoshan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1449-1460
    • /
    • 2021
  • In this paper, we consider the following nonlocal fractional Laplacian equation with a singular nonlinearity (-∆)su(x) = λuβ (x) + a0u (x), x ∈ ℝn, where 0 < s < 1, γ > 0, $1<{\beta}{\leq}\frac{n+2s}{n-2s}$, λ > 0 are constants and a0 ≥ 0. We use a direct method of moving planes which introduced by Chen-Li-Li to prove that positive solutions u(x) must be radially symmetric and monotone increasing about some point in ℝn.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

Modeling the Calculation of Lateral Accelerations in Railway Vehicles as a Tool of Alignment Design

  • Nasarre, J.;Cuadrado, M.;Requejo, P.Gonzalez;Romo, E.;Zamorano, C.
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.118-123
    • /
    • 2009
  • Railway track alignment Standards set a minimum lenght value for straight and circular alignments (art. 5.2.9.), in order to ensure passenger ride comfort in railway vehicles of which dynamic oscillations will thus have to be limited. The transitions between alignments can cause abrupt changes (usually called discontinuities or singular points of the alignment) of curvature, of rate of change of curvature or of rate of change of cant. A passenger is likely to experience effects due to the excitation of the elastic suspension of the vehicle which generates oscillations that are damped as the vehicle moves away from the singularity. The amplitude of these oscillations should be adequately attenuated by the damping of the suspension system within the interval between two successive singular points, especially to avoid resonances. Therefore minimum lengths between two successive singular points are stated in alignment standards. Nevertheless, these nonnative values can be overly conservative in some cases. As an alternative, track alignment designers could try to assess how much the excitation has been attenuated between two successive singular points and thus assess at which point a new singularity may be present without affecting ride comfort. Although such assessment can be made with commercial SW packages which simulate the dynamic behavior of a vehicle considered as a set of rigid bodies interconnected with elastic elements simulating the suspension systems (such as SIMPACK, ADAMS or VAMPIRE), a simplified and user-friendly computation method (based upon the analytical solution of differential equations governing the phenomenon) is made available in this paper to track design engineers, not always used to working with full dynamic models.

  • PDF