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BRILL-NOETHER THEORY FOR
RANK 1 TORSION FREE SHEAVES
ON SINGULAR PROJECTIVE CURVES

E. BaLrico

ABSTRACT. Let X be an integral Gorenstein projective curve with
9 = pa(X) > 3. Call G(X,+) the set of all pairs (L, V) with
L € Pic(X), deg(L) = d, V € H°(X,L), dim(V) = r + 1 and
V spanning L. Assume the existence of integers d, r with 1 <
r < d < g — 1 such that there exists an irreducible component,
T, of GG(X, »*) with dim(I') > d — 2r and such that the general
L € T is spanned at every point of Sing(X). Here we prove that
dim(T") = d — 2r and X is hyperelliptic.

Let X be an integral projective curve with g := p,(X) > 2 de-
fined over an algebraically closed field K. We want to study the
Brill - Noether theory of special line bundles on X. However, if L €
Pic(X), h%(X,L) > 2 but L is not spanned by its global sections at
some point of Sing(X) the subsheaf L’ of L generated by H°(X, L) may
be not locally free but only torsion free. This observation explains why
in the theory of special line bundles on singular curves one has to con-
sider also torsion free sheaves and motivates the introduction of the
following notations. For all positive integers d, r set WJ(X) :={rank
1 torsion free sheaves L on X with deg(L) = d and h°(X,L) > r +1},
Wi(X,*) :={L € WJ(X): L is a flat limit of a family of line bun-
dles on X}, Wi(X, ) := WJ(X) N Pic(X), WI(X,xxx) := {L €
W7 (X,#x) : L is spanned by its global sections at every point of
Sing(X)} and p(g,r,d) := g — (r + 1)(g + r — d). Every rank 1 tor-
sion free sheaf on X is the flat limit of a family of line bundles if and
only if X has only planar singularities (see [18] or [1] and references
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therein). Similarly, one defines the sets G(X), G5(X,*), GH(X,*x)
and G5(X,* * ). Most of our results are effective only for Goren-
stein curves. In section 1 we fix the notation and give a few remarks.
At the beginning of section two we introduce four notions of gonality;
gon(X,2) seems to be the more important one. In the same section
we will prove the next two theorems which are a partial extension to
singular curves of the so-called Martens - Mumford’s theory.

THEOREM 0.1. Let X be an integral Gorenstein projective curve
with g := po(X) > 3. Assume the existence of integers d, r with
1 <r <d < g—1 such that there exists an irreducible component, T,
of GT(X, ) with dim(I") > d — 2r and such that the general L €T is
spanned at every point of Sing(X). Then dim(T') = d — 2r and X is
hyperelliptic.

THEOREM 0.2. Let X be an integral Gorenstein projective curve
with g := pa(X) > 3. Assume that X is not hyperelliptic. Assume the
existence of integers d, r with 1 < r < d < g — 1 such that there exists
an irreducible component, T', of G4(X, *x) with dim(T") > d —-2r -1
and such that the general L € T is spanned at every point of Sing(X).
Then dim(T') = d — 2r — 1 and either gon(X,2) = 3 or X is a double
covering of an integral curve C with po(C) =1 (i.e., X is a generalized
bielliptic curve). Viceversa, every triple covering f : X — P! has
G3(X,*x) # 0 and for every double covering of an integral curve C
with p,(C) = 1 there exists an irreducible component T' of G5(X, **)
with dim(T") = 1 formed by pull-backs of gi's on C.

In section 2 we will apply Theorems 0.1 and 0.2 to the existence of
base point free line bundles on X with degree g or g — 1 (see Theorem
2.5 and 2.6). In the same section we will classify all integral curves
X with arithmetic genus g > 2 such that every L € Pic9(X) has
h'(X,L) = 0 : such curves do exist (see Proposition 2.7, Theorem 2.12
and Corollary 2.13).

We want to thank the referee for several important remarks. The
author was partially supported by MURST (Italy).

1. We will use the following notations, conventions and definitions.
Let X be an integral projective curve and 7 : ¥ — X its normal-
ization. For every P € Sing(X), let Op := Ilger-1(p)Oy,Q be the
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integral closure of Ox,p in its total ring of fractions and Cp the con-
ductor of Ox p in O%. We will add a superscript " to denote the cor-
responding objects for the formal completion of Ox p. Set Ip:=Cp
if X is either Gorenstein or unibranch at P and Ip := Cp2 other-
wise; this choice is motivated by [7], Remark 2 at p. 21, and (in the
unibrach case) the key result [11], 1.4; the sheaf Ip defines the ideal
sheaf of an effective divisor, Dp, of Y supported on 7~1(P) and with
deg(Dp) = dimK(Ox,p/IP) = dimK(Ox,pA/Iph); let 6”(Q) be the
degree of the connected component of Dp supported by @; hence
8"(Q) > 0 for every Q € 7~*(P) and Xger-1(p)9”(Q) = deg(Dp).
Set (5(P) = dimK(Olp/Ox,p), JI(P) = dimK(olp/Cp), (5”(P) =
dimk(Ox,p/Ip) = Z‘QG,,,—x(p)é’l(Q), (X)) = EPeSing(X)fs(P),
JI(X) = Epesmg(x)(s'(P) and 5”(X) = EPeSing(X)él’(P)- Hence if X
is Gorenstein we have §”(X) = §(X) = 26(X). Set ¢ := g — §(X) =
po(Y) (the geometric genus of X).

REMARK 1.1. Let X be a Gorenstein irreducible projective curve.
Since wx and all elements of W (X, **) are locally free, we may give
as in [3], Ch. IV, a scheme structure to G5(X, **). Fix L € W7 (X, »x).
With this scheme structure the tangent space of G5(X, **) at L is given
by the cokernel of the cup-product map po : H %(X,L)® HY(X,wx ®
L1y - H°(X,wx) (see [3], Ch. IV, §4, or [2], Proof of Th. 3.3).

REMARK 1.2. Fix integers q,¢,t,t',g with ¢ > 0, ¢ > 0, t >
0, t' > 0 and smooth curves C,C’ with p,(C) = ¢ and p.(C’) = ¢'.
Let X be an integral projective curve with p,(X) = g and such that
there exist morphisms f : X — C and f' : X — C’ with deg(f) =t
and deg(f’) = t'. Assume that the induced map (f, f') : X = C x C’
is birational. Then, exactly as in the case in which X is smooth, we
have Castelnuovo - Severi inequality g < tg+t'q’ + (t —1)(t' — 1) ([16],
Cor. to Th. 1), because this inequality is just an inequality for the
arithmetic genus of suitable divisors on the smooth surface C x C’.
Furthermore, if ¢ = tq + t/¢' + (¢t — 1)(t' — 1), then the morphism
(f, f') must be an isomorphism and hence X must have only planar
singularities. Assume that there is no morphism f : X — C with
deg(f) - pa(C) low and that gon(X,2) (see Definition 2.1) is much
lower than g; as in the smooth case Castelnuovo - Severi inequality
implies that gon(X,2) is computed by a unique pencil and that there
is a lower bound for the first integer d > gon(X,2) such that there
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exists a spanned L € Pic?(X)with A%(X, L) > 2.

REMARK 1.3. Assume X Gorenstein and g := p,(X) > 2. The line
bundle wyx is spanned, i.e., the canonical map u, : X — P9 ! isa
morphism ([6], Th. D, or [R]). The canonical map u,, is not birational
if and only if it is a two - to - one morphism and in this case X is
“hyperelliptic” ([6], Prop. 3.10, or [R]). If X is not hyperelliptic, then
u,, is an embedding ([R], Th. 15, or [13], Th. 1.6). For a discussion
of this topic, even in the non-Gorenstein case, see [20]. Fix positive
integers d, r with p(g,7,d) > 0 and assume X not hyperelliptic. The
standard proof of the inequality dim(G5(X,**)) > p(g,7,d) given in
[12], p. 260, just uses u,(X) and the Grassmannian G(d — g — r,g) of
all projective subspaces of dimension d — r — 1 of P9~1; since u,, is
an embedding, this proof shows that for every L € WJ(X, xx) every
irreducible component of Wj (X, **) containing L has dimension at
least p(g,r,d).

REMARK 1.4. Let X be an integral projective hyperelliptic curve
and L € Pic%(X) its hyperelliptic spanned line bundle. In particular
X is Gorenstein ([10], part (b) of Th. A). Set g := po(X). Since
L8~ =~y and S9-}(HO(X, L)) = H°(X,wx), every spanned line
bundle, M, on X with h1(X, M) # 0 is isomorphic to a line bundle
L®* for some integer ¢t with 0 < t < g—1. In particular deg(M) is even.
Hence by Riemann - Roch the line bundles L®* with 0 < ¢ < [g/2] are
the only spanned line bundles on X with degree at most g. Further-
more, for every integer d with 2 < d < g there exists an irreducible
component, I', of W7 (X, #x) with dim(I") = d — 2r and whose general
member is a line bundle spanned at every point of Sing(X). Compare
this classical example with the partial extension of Martens - Mum-
ford’s theory stated in the introduction and proved in section two.

Using the existence theorem for special divisors on smooth pro jective
curves ([3], Ch. IV) it is very easy to prove the following result.

ProPOSITION 1.5. Fix integers g,r,d withg > 2, d > 0, » > 0 and
p(g,d,r) > 0. Let X be an integral projective curve with p,(X) =
g and whose only singularities are smoothable singularities. Then
W (X) # 0 and dim(W}(X)) > p(g,r, d)-
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Proof. Since X has only smoothable singularities, X is a flat limit
of an integral family of connected smooth curves of genus g. Hence
it is sufficient to use the existence of the relative generalized Jacobian
for flat families of integral projective curves ([1]), the semicontinuity of
cohomology and the semicontinuity of the fiber dimension for proper
maps. O

2. First we will give 4 notions of gonality and 8 notions of Clifford
index for singular curves.

DEFINITION 2.1. Let X be an integral projective curve. Let gon(X, 1)
be the first integer ¢ such that there exists L € Pict(X) with h%(X, L) >
2; taking L(—P) instead of L for a general P € X we see that any such
L has h%(X,L) = 2 and it is spanned at each point of Xie;. Let
gon(X,2) be the first integer ¢ such that there exists L € Pict(X) with
h%(X,L) > 2 and L base point free; taking L(—P) instead of L for a
general P € X we see easily that any such L has h°(X,L) = 2. Let
gon(X, 3) be the first integer ¢ such that there exists a rank 1 torsion
free sheaf L with deg(L) > 2 and deg(L) = ¢t; notice that any such L is
spanned by its global sections and h%(X, L) = 2. Let gon(X, 4) be the
first integer t such that there exists a rank 1 torsion free sheaf L , L
flat limit of a family of lines bundles, with deg(L) > 2 and deg(L) = t;
notice that any such L has h°(X,L) = 2 and it is spanned at each
point of X;eg.

DEFINITION 2.2. Let X be an integral projective curve with g :=
pa(X) > 2. For any rank 1 torsion free sheaf L on X let CLff(L) :=
deg(L) — 2(h°(X, L)) + 2 be its Clifford dimension. Set Cliff(X,1) :=
max{Cliff(L) for L line bundle on X with h(X,L) > 2 and 0 <
deg(L) < g — 1}. Set Cliff(X,2) := max{Clff(L) for L spanned
line bundle on X with h°(X,L) > 2 and 0 < deg(L) < g — 1}. Set
Cliff(X, 3) := max{Cliff(L) for L rank 1 torsion free sheaf on X with
hO(X,L) > 2 and 0 < deg(L) < g—1}. Set Cliff(X,4) := max{ClLff(L)
for L rank 1 torsion free sheaf on X with L flat limit of a fam-
ily of line bundles, h°(X,L) > 2 and 0 < deg(L) < g — 1}. Set
Cliff(X, 5) := max{Cliff(L) for L line bundle on X with h%(X,L) > 2
and h!(X, L) > 2}. Set Cliff(X,6) := max{Cliff(L) for L spanned line
bundle on X with A%(X,L) > 2 and h!(X, L) > 2}. Set Cliff(X,7) :=
max{Cliff(L) for L rank 1 torsion free sheaf on X with h°(X, L) > 2 and
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RY(X,L) > 2}. Set Cliff(X, 8) := max{Cliff(L) for L rank 1 torsion free
sheaf on X with L flat limit of a family of line.bundles, h%(X, L) > 2
and h'(X, L) > 2}.

Every rank 1 torsion free sheaf on an integral projective curve X
is a flat limit of a family of line bundles if and only if X has only
planar singularities ([1) or [18]). Hence if X has only planar sin-
gularities we have gon(X, 3) =gon(X,4), Cliff(X,3) =Cliff(X,4) and
Cliff(X, 7) =Cliff(X, 8).

Now we will prove Theorems 0.1 and 0.2.

Proof of Theorem 0.1. We may repeat the proof of the smooth case
given in [3], p. 192, for the following reasons. We may reduce to the
case in which a general L € I' is spanned (lowering if necessary d)
without loosing the condition that a general element of I is locally free
because a general L € I is spanned at every point of Sing(X). We may
apply the infinitesimal theory of G(X, *x) by Remark 1.1. We may
apply Clifford’s inequality by [10], Th. A. We may apply the base point
free pencil trick, because it holds with the same proof for Gorenstein
singular curves; notice that here we need that we use a spanned line
bundle; we could not use a line bundle spanned at each point of X;e,
and this is the only point of the proof in which this assumption is
used. ]

Proof of Theorem 0.2. By Theorem 0.1 we have dim([’) = d—2r—1.
As in the first few lines of the proof of [3], Th. IV.5.2, we may reduce
to the case r = 1, without loosing the key condition “a general L €
I' is spanned at every point of Sing(X)”. Again, as in the proof of
[3], Th. IV.5.2, we obtain d < 5 and that if d = 5 then g must be
7. If d = 3 we obtain gon(X,2) = 2. Now assume d = 4. As in
[3] we have g > 6. Since dim(I') = 1 we may repeat the proof of
[3], pp. 194-195, and obtain that for L,L’ € T with L # L’ we have
hO(X,L®L') = 4. As in [3], p. 195, this gives a morphism ¢ : X — P?
with deg(¢) deg(f(X)) = 6 and ¢(X) spanning P2. If deg(¢(X)) = 2,
we obtain gon(X,2) < 3. If deg(¢(X)) = 3 we obtain that X is a
double covering of an integral curve C := ¢(X) with p,(C) = 1. If
deg(¢(X)) = 6 the map ¢ must be an embedding because g > 6. It
remains to exclude the case d = 5 and ¢ = 7. By Riemann - Roch
for a general L € T we have wx ® L™2 = Ox (D) for some effective
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Cartier divisor on X. By Serre duality and Riemann - Roch we have
RO(X,L(D)) = h!(X,wx ® L™!) > 3. Since X is not hyperelliptic, by
[10] wx ® L' cannot have a base point and must send birationally
X onto a plane curve of degree 5 and hence with arithmetic genus at
most 6, contradiction. |

The following lemma was proved in [13], first paragraph on page
379.

LEMMA 2.3. Let X be an integral projective curve and L € Pic*(X)
such that R%(X,L) > 2 and L is spanned at each point of Sing(X).
Then gon(X,2) < t.

Proof. By assumption the scheme-theoretic base locus of L is con-
tained in X,e; and hence either it is empty or it is an effective Cartier
divisor, B. Since L(—B) € Pic*(X) with 2z = t — deg(D) < t, we
conclude. O

Let X be an integral projective curve. The singularities of X give a
lower bound on gon(X,2) as shown by the following example.

EXAMPLE 2.4. Let X be an integral projective curve with Sing(X) #
@ and 7 : Y — X the normalization. For every P € Sing(X) let k(X, P)
be the degree of the effective divisor 7~1(P) of Y; here 7~ (P) denotes
the scheme-theoretic fiber of w at P. Set k(X)) := maxpeging(x){k(X, P)}.
Notice that k(X) > 2 because Sing(X) # 0 by assumption. We claim
that gon(X,2) > k(X). Take any L € Picg®**2)(X) computing
gon(X,2). Thus L is spanned. Since dim(X) = 1 it is easy to check
the existence of a linear subspace V of H°(X, L) with dim(V) = 2
and V spanning L. Hence n*(V) is a subspace of H°(Y, n*(L)) span-
ning 7*(L). Thus 7*(V) induces a morphism f : ¥ — P! with
deg(f) =gon(X,2). By construction f factors through w. Since ev-
ery scheme-theoretic fiber of f is an effective divisor on Y with degree
deg(f), we have deg(f) > k(X), as claimed.

It is known that a smooth curve X of genus g > 2 has a base point
free line bundle of degree g, unless g is odd and X is hyperelliptic;
furthermore, a smooth curve X of genus g > 7 has a base point free
line bundle of degree g — 1, unless X is either hyperelliptic or bielliptic
(see [15] or [8], Lemma 2.1.1, or [5], Th. 0.1, for references and stronger
statements).
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THEOREM 2.5. Let X be an integral Gorenstein projective curve.
Then there exists L € Pic9(X) spanned by its global sections, unless g
is odd and X is hyperelliptic.

Proof. By Remark 1.4 everything is obvious in the hyperelliptic case.
Hence we may assume X not hyperelliptic. By [14] we have gon(X,2) <
g- By definition of gon(X,2) the result is obvious if gon(X,2) = g.
Hence we may assume gon(X,2) < g. Adding as base points only
points of X,eg and using Remark 1.3 we obtain that for every integer
d with max{gon(X, 2),[(g + 3)/2]} < d < g there exists an irreducible
component G(d) of G4(X, *x) such that dim(G(d)) > p(g,1,d) = 2d —
g — 2 and such that a general pair (L,V) € G(d) is spanned at every
point of Sing(X). In particular we have dim(G(g)) > g—2. In order to
obtain a contradiction we assume that a general element of G(g) is not
spanned. Since a general element of G(g) is spanned at every point of
Sing(X), this implies the existence of an component T of G}_; (X, **)
such that for a general L € G(g) there exists M € T and P € X,
such that L = M(P), h%(X,L) = h°(X, M) and M is spanned at each
point of Sing(X). Hence dim(T") > g — 3. By Theorem 0.1 we obtain
that X is hyperelliptic, contradiction. 0

THEOREM 2.6. Let X be an integral Gorenstein projective curve
with g := po(X) > 5 and gon(X,2) < g — 1. Then there exists L €
Pic?~1(X) spanned by its global sections, unless either g(X,2) < 3 or
X is bielliptic.

Proof. By the definition of gon(X, 2) the result is obvious if gon(X, 2)
= g — 1. Hence we may assume gon(X,2) < g — 1 and repeat verbatim
the proof of Theorem 2.5 with the pair of integers (g9 — 1, g — 2) instead
of the pair of integers (g,¢g — 1) and quoting Theorem 0.2 instead of
Theorem 0.1. For non-Gorenstein curves the numerical behaviour of
the Brill - Noether theory of special line bundles may be much worst.
Indeed, the theory may be empty as shown by the following key exam-
ple; for the definition of seminormality and its geometric interpretation
for curves, see [21] and [9]. O

PROPOSITION 2.7. Fix an even integer g > 2. Let X be an integral
projective curve with a unique singular point, P, which is seminormal
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and with g+ 1 branches. Assume that the normalization of X is ratio-
nal, i.e., assume po(X) = g. Then for every line bundle L on X with
deg(L) < g we have h°(X,L) < 1.

Proof. Fix L € Pic(X) with deg(L) < g and d := deg(L) < g.
Fix P € Xyog. Assume hO(X,L) > 2. Thus h(X,L((g — d)P)) >
2. Hence by Riemann - Roch we have h'(X, L((g — d)P)) # 0 and
thus by Serre duality h%(X,Hom(L((g — d)p),wx)) # 0. Take f €
H°(X,Hom(L{(g —d)p),wx)), f # 0. By [7], example after Def. 2.2.3
at line 11 on p. 18, Coker(f) is a skyscraper sheaf whose connected
component supported by P is a vector space of dimension at least
2g —(g+1). Since deg(wx) —deg(L((g— P))) = g —2, this is absurd.0J

DEFINITION 2.9. Let X be an integral projective curve and R a
rank 1 torsion free sheaf on X. For every P € Sing(X) let I(R, P)
be the minimal integer ¢ such that there exists a rank 1 trivial Ox, p-
module A with A C Rp and dimk(Rp/A) = t; here Rp denotes the
stalk of R at P as Ox, p-module. The same definition applies to a rank
1 torsion free Ox, p*-module R"; this is [7}, Def. 2.2.3.

We need the following well-known lemma (see e.g. [4], Remark 1.14).

LEMMA 2.10. Let X be an integral projective curve and R a rank
1 torsion free sheaf on X. Then deg(R) — Epesing(x){(R, P) is the
maximal degree of a line bundle L on X with L C R.

LEMMA 2.11. Let X be an integral projective curve. Then 2p,(X)—
2 —26(X)+4'(X) is the maximal degree of a line bundle L on X with
L g wx.

Proof. Fix P € Sing(X). By [7], example after Def. 2.2.3 at line 11
on p. 18, we have l(wx, P) = 26(X, P) — §'(X, P). Hence we conclude
by Lemma 2.10. As an immediate corollary of Lemma 2.11 we obtain
the following result. O

THEOREM 2.12. Let X be an integral projective curve. Assume
g = pa(X) > 2. There is no line bundle L € Pic?(X) with h* (X, L) #
0 if and only if the normalization of X is rational, card(Sing(X)) = 1
and the unique singular point, P, of X is seminormal, i.e., it has g+1
branches.



368 E. Ballico

COROLLARY 2.13. The curve X described in Proposition 2.7 is the
“only” curve with g := ps(X) > 2 such that there is no line bundle L
on X with deg(L) < g and with h°(X,L) > 2.

Here we explain the means of the word “only” in the statement of
Corollary 2.13. We start with any g + 1 distinct points @1, -+, Qg+1
of P! and call X(Qy,--- ,@g+1) the unique curve obtained from P*
gluing together the points Q1, - - , @g+1 in the sense of [21] or [9]. Any
curve X in Proposition 2.7 and Corollary 2.13 arises in this way for a
unique choice (up to the action of Aut(P')) of the points Q1,- -+ , Qg+1.
Hence if g = 2 the curve X is unique, up to isomorphisms; if g > 3 there
is an action of Aut(P!) on the set of all subsets of P! with cardinality
g+ 1 and this action is studied in [17], §2; roughly speaking, for g > 3
the set of all such X depends on g — 2 parameters and there is a
smooth, irreducible variety of dimension g + 1 parametrizing all such
X in such a way that every isomorphism class of one X corresponds
to a 3-dimensional subscheme of the parameter space.
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