• 제목/요약/키워드: Single-bolted connection

검색결과 20건 처리시간 0.026초

연단거리를 변수로 갖는 오스테나이트계 스테인리스강(STS201) 일면전단 볼트접합부의 최대내력에 관한 해석연구 (Analysis Study on Ultimate Strength of Single-shear Bolted Connections with Austenitic Stainless Steel(STS201) with Varied End and Edge distances)

  • 차은영;황보경;이후창;김태수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권5호
    • /
    • pp.1-11
    • /
    • 2017
  • This study focused on the ultimate behaviors(ultimate strength and fracture mode ) of single shear bolted connection with austenitic sainless steel(STS201) and curling effect on the ultimate strength using finite element analysis based on test results. Main variables are end distance in the parallel direction to loading and edge distance in the perpendicular direction to loading. The validation of finite element analysis procedures was verified through the comparisons of ultimate strength, fracture mode and curling(out-of-plane deformation) occurrence between test results and numerical predictions. Curling was observed in both test and analysis results and it reduced the ultimate strength of single- shear bolted connections with relatively long end distances. Strength reduction ratios caused by curling were estimated quantitatively by maximum 19%, 32%, respectively for specimens with edge distance, 48 mm and 60 mm compared with strengths of uncurled connections with restrained out-of-plane deformation. Finally, analysis strengths were compared with current design strengths and it is found that design block shear equations did not provide the accurate predictions for bolted connections with strength reduction by curling.

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

Analysis of the Behavior of Bolt Jointed Wood Connections by Applying Semi-Rigid Theory

  • Kim, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.72-82
    • /
    • 2000
  • Attempts were made to analyze the behavior of single and multiple-bolted connections through theoretical methods such as European yield theory, empirical approaching method, and semi-rigid theory instead of many experimental methods that have been actually inefficient and non-economical. In the case of a single-bolted connection, if accurate characteristic values of a material could be guaranteed, it would be more convenient and economical to perform the behavior analysis using a model based on the semi-rigid theory, instead of the existing complex yield model, or the empirical formula which produces errors, giving different results from the actual ones. If the variables of equation determining the load and deformation could be appropriately controlled, the analytical method in conjunction with a semi-rigid theory could be effectively applied to obtain the desirably predicted value, considering that the appropriate solution could be derived through a simpler equation using a less difficult method compared to the existing yield model. It is concluded that analytical method with semi-rigid theory can be used in the behavior analysis of bolted connection because our developed method showed excellent analysis ability of behavior until number of bolt is two. Although our analytical method has the disadvantage that the number of bolt is limited to two, it is concluded that it has the advantage than numerical method which complicated and time-consuming.

  • PDF

Evaluation of Three Support Shapes on Behavior of New Bolted Connection BBCC in Modularized Prefabricated Steel Structures

  • Naserabad, Alifazl Azizi;Ghasemi, Mohammad Reza;Shabakhty, Naser;Arab, Hammed Ghohani
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1639-1653
    • /
    • 2018
  • Bolted connections are suitable due to high quality prefabrication in the factory and erection in the workplace. Prefabrication and modularization cause high speed of erection and fabrication, high quality and quick return of investment. Their technical hitches transportation can be removed by prefabrication of joints and small fabrication of components. Box-columns are suitable members for bolted structures such as welded steel structures with moment frames in two directions etc., but their continual fabrication in multi-story buildings and performing the internal continuity plate in them will cause some practical dilemmas. The details of the proposal technique introduced here, is to remove such problems from the box columns. Besides, some other advantages include new prefabricated bolted beam-to-column connections referred to BBCC. This connection is a set of plates joined to columns, beams, support, and bolts. For a better understanding of its fabrication and erection techniques, two connection and one structural maquettes are made. The present work aims to study the cyclic behavior of connection numerically. To verify the accuracy of model, a similar tested connection was modelled. Its verification was then made through comparison with test results. The behavior of connection was evaluated for an exterior connection using three different support shapes. The effects of support shapes on rigidity, ductility, rotation capacity, maximum strength, four rad rotation strength were compared to those of the AISC seismic provision requirements. It was found that single beams support has all the AISC seismic provision requirements for special moment frames with and without a continuity plate, and box with continuity plate is the best support in the BBCC connection.

An experimental study of the behaviour of double sided bolted billet connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.603-622
    • /
    • 2018
  • Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.

오스테나이트계 스테인레스강(STS304) 앵글 볼트 접합부의 구조적 거동에 관한 실험적 연구 (An Experimental Study on Structural Behavior of Bolted Angle Connections with Austenitic Stainless Steel)

  • 김민성;김태수;김승훈;이용택
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.29-39
    • /
    • 2011
  • 강구조물에서 접합부의 구조적 거동을 파악하기 위해서 국내외에서 많은 이론과 실험을 통한 연구가 진행되고 있다. 특히, 국내에서는 탄소강 ㄱ형강의 블록전단파단과 전단지체현상 등에 대한 연구가 수행되어 왔다. 본 연구에서는 오스테나이트계 스테인레스강 앵글의 하중방향의 연단거리와 볼트배열(1행 1열,1행 2열)을 주요변수로 실험체를 계획하여, 앵글 볼트 접합부의 파단형태와 면외변형의 영향을 조사한다. 또한, 현행 기준식에 의한 예측결과와 실험결과의 파단양상과 최대내력을 비교하고 면외변형으로 인한 내력저하정도를 평가한다.

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

단일볼트 지압접합부의 힘-변형관계 (Load-Deformation Relationship of Single Bolted Connections)

  • 김대경;이철호;진승표;윤성환
    • 한국강구조학회 논문집
    • /
    • 제29권5호
    • /
    • pp.341-352
    • /
    • 2017
  • 강구조물을 접합하는 대표적인 두 가지 방법으로는 용접접합과 볼트접합이 있다. 이중 잘 접합된 볼트접합은 지압메카니즘에 의한 강도상승과 연성거동을 기대할 수 있다. 이러한 볼트접합부의 연성능력을 충분히 활용하기 위해 본 연구에서는 합리적인 단일볼트접합부의 힘-변형관계 및 지압강도 산정식을 제안하고자 하였다. 볼트접합부의 경계조건 및 기하학적인 요소를 고려하여 체계적으로 단일볼트 실험을 수행하였다. 현행 설계기준의 볼트접합부의 지압강도 산정식의 모순점을 해결하기 위해 새로운 지압강도 설계식 및 변형한계 산정식을 제안하였다. 또한 접합부의 강성, 강도, 기하학적 조건 등을 반영할 수 있는 힘-변형관계식을 제안하였다. 본 연구에서 제시한 지압강도식 및 힘-변형관계식은 현행설계기준보다 합리적으로 실험결과를 예측하였다.

페라이트계 스테인리스강(STS430) 이면전단 볼트접합부의 구조거동에 관한 실험적 연구 (An Experimental Study on Structural Behaviors of Double Shear Bolted Connections Fabricated with Ferritic Stainless Steel (STS430))

  • 김태수;김민성
    • 한국강구조학회 논문집
    • /
    • 제25권5호
    • /
    • pp.463-474
    • /
    • 2013
  • 일면전단 오스테나이트계 스테인리스강 및 탄소강에 관한 많은 실험 및 해석적 연구가 수행되어졌고, 수정된 내력평가식이 제안되었다. 본 연구에서는 볼트배열(2행 1열, 2행 2열)과 하중방향 연단거리를 주요변수로 하여 이면전단 볼트접합부 실험체가 제작되었고, 단순인장실험이 실시되었다. 고정변수로는 하중직각방향 연단거리, 볼트직경, 피치, 게이지를 설정하였다. 최대내력과 파단형태와 같은 실험결과와 현행기준식에 의한 예측결과와 비교 검토되었다. 볼트배열에 따른 블록전단내력평가식이 제안되었다.

볼트 전단파단이 지배하는 지압형식 볼트접합부의 힘-변형 관계 (Force-Deformation Relationship of Bearing-Type Bolted Connections Governed by Bolt Shear Rupture)

  • 김대경;이철호;진승표;윤성환
    • 한국강구조학회 논문집
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2015
  • 잘 접합된 볼트접합부는 볼트의 전단파단이 발생할 때 까지 지압 메커니즘에 의하여 훌륭한 연성거동을 보인다. 이러한 볼트접합부에 내재된 연성 능력을 최대한 활용한다면 중력하중, 풍하중, 지진하중 등 다양한 하중에 대하여 활용하여 접합비용의 경제성 제고에 기여할 수 있다. 편심하중을 받는 볼트접합부의 경우 보수적인 탄성해석법과 합리적으로 볼트접합부의 연성거동을 활용할 수 있는 극한강도 해석법이 존재하나 기존의 극한강도해석법은 오늘날 다양한 소재와 설계조건의 다양화에도 불구하고 하나의 소재와 조건으로 이루어진 실험식에 의존하고 있다. 본 연구의 주된 목적은 체계화된 단일볼트의 실험을 기반으로 볼트의 일반화된 힘-변형 관계식을 정립하는 것이다. 실험결과를 토대로 볼트접합부의 기하학적인 요소(볼트의 직경, 플레이트의 두께) 및 강도가 힘-변형 관계에 주된 영향을 미치는 요소라는 것을 알 수 있다. 실험결과를 순간중심회전법에 적용하여 보다 정확하고 경제적인 편심하중을 받는 군볼트 접합부 설계가 가능하다.