• Title/Summary/Keyword: Single inductor

Search Result 226, Processing Time 0.027 seconds

A Performance Comparison of the Current Feedback Schemes with a New Single Current Sensor Technique for Single-Phase Full-Bridge Inverters

  • Choe, Jung-Muk;Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.621-630
    • /
    • 2016
  • In this paper, a single current sensor technique (SCST) is proposed for single-phase full-bridge inverters. The proposed SCST measures the currents of multiple branches at the same time, and reconstructs the average inductor, capacitor, and load current in a single switching cycle. Since all of the branches' current in the LC filter and the load are obtained using the SCST, both the inductor and the capacitor current feedback schemes can be selectively applied while taking advantages of each other. This paper also analyzes both of the current feedback schemes from the view point of the closed-loop output impedance. The proposed SCST and the analysis in this paper are verified through experiments on a 3kVA single-phase uninterruptible power supply (UPS).

A Highly Power-Efficient Single-Inductor Multiple-Outputs (SIMO) DC-DC Converter with Gate Charge Sharing Method

  • Nam, Ki-Soo;Seo, Whan-Seok;Ahn, Hyun-A;Jung, Young-Ho;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.549-556
    • /
    • 2014
  • This paper proposes a highly power-efficient single-inductor multiple-outputs (SIMO) DC-DC converter with a gate charge sharing method in which gate charges of output switches are shared to improve the power efficiency and to reduce the switching power loss. The proposed converter was fabricated by using a $0.18{\mu}m$ CMOS process technology with high voltage devices of 5 V. The input voltage range of the converter is from 2.8 V to 4.2 V, which is based on a single cell lithium-ion battery, and the output voltages are 1.0 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V. Using the proposed gate charge sharing method, the maximum power efficiency is measured to be 87.2% at the total output current of 450 mA. The measured power efficiency improved by 2.1% compared with that of the SIMO DC-DC converter without the proposed gate charge sharing method.

Filter Design for Utility Interactive Inverters using Single-Phase Half-Bridge Topology (단상하프브릿지 구조를 갖는 계통연계형 인버터의 필터인덕터 설계)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.364-371
    • /
    • 2007
  • This paper deals with filter design for utility-interactive voltage-sourced PWM inverters built by single-phase half-bridge topology. By analyzing the relation between utility voltage and the ac output voltage of single-phase half-bridge inverters, the instantaneous voltage applied on the filter inductor is deduced qualitatively and quantitatively. Moreover, switching ripple current through the filter inductor is calculated from the filter inductor voltage. Based on the above mentioned analysis, filter design method is proposed by evaluating the percentage of the switching ripple current against the rated fundamental current. Proposed filter design method is verified by simulation and experiment.

Filter Design for Utility Interactive Inverters using Single-phase Full-bridge Topology (단상풀브릿지 구조를 갖는 계통연계형 인버터의 필터인덕터 설계)

  • Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.346-353
    • /
    • 2007
  • This paper deals with filter design for utility-interactive voltage-sourced PWM inverters built by single-phase full-bridge topology By analyzing the relation between utility voltage and the ac output voltage of single-phase half-bridge inverters, the instantaneous voltage applied on the filter inductor is deduced qualitatively and quantitatively. Moreover, switching ripple current through the filter inductor is calculated from the filter inductor voltage. Based on the above mentioned analysis, filter design method is proposed by evaluating the percentage of the switching ripple current against the rated fundamental current. Proposed filter design method is verified by simulation and experiment.

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

Implementation of a Sliding Mode Controller for Single Ended Primary Inductor Converter

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.39-53
    • /
    • 2015
  • This paper presents the regulation of the output voltage and inductor currents in a Single Ended Primary Inductor Converter (SEPIC), operating in the continuous conduction mode (CCM) using a sliding mode controller. Owing to the time varying nature of the SEPIC converter, designing a feedback controller is a challenging task. In order to improve the dynamic performance of the SEPIC, a Sliding Mode Controller (SMC) is developed. The developed SMC is designed by using a state space average model. The performance of the developed controller with the SEPIC converter is validated at different working conditions through Matlab simulations. It is also compared with the performance while using a PI controller. The results show that the designed controller gives very good output voltage regulation under different operating conditions such as a varying input voltage, changes in the load and component variations. A 48V, 46W experimental setup for has been developed in an analog platform to validate the performance of the proposed SMC.

Bidirectional dc-to-dc Converter Employing Dual Inductor for Current Ripple Reduction (전류 리플 저감을 위한 듀얼 인덕터 방식의 양방향 dc-to-dc 컨버터)

  • Lee, Gi Yeong;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.531-537
    • /
    • 2018
  • This paper propose a bidirectional dc-to-dc converter employing dual inductor for current ripple reduction. Conventional bidirectional dc-to-dc converter uses a single inductor for two different modes; boost and buck; therefore it is difficult to satisfy the optimized inductance value for each mode. To improve this problem, the proposed converter adds two switches, a diode, and one inductor. By proper switching of the additional switch, the proposed converter operates with a inductor in boost mode, but it works with dual inductor in buck mode. Hence in both modes the proposed bidirectional converter can be operated with optimized inductance values. Most of all the optimized inductance in buck mode can reduce the current ripple and its effective value(rms), which are directly related to the temperature increase resulted in short lifetime of battery. To verify the validity of the proposed approach, we first analyzes the operation of the proposed converter theoretically, and implement computer-aided simulations and experiments using a prototype.

Study on Frequency Characteristics for Double-Layer Symmetric Spiral Inductor (2층 대칭 나선형 인덕터에 대한 주파수 특성 연구)

  • Kim, Jae-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.315-320
    • /
    • 2022
  • In the case of a general spiral inductor, the orientation of the port is affected as it has an asymmetric structure. In this paper, double-layer spiral inductor that can have a symmetrical structure is proposed, and the simulation and frequency characteristics are analyzed. Compared to the conventional single-layer symmetrical inductor having an inductance of 3.9~4.2nH, the proposed double-layer symmetric spiral inductor has an inductance of 11~12nH in 0.3~1.2GHz frequency range, a quality factor of about 4.4 in 800MHz, and a self-resonant frequency of about 2.7~2.8GHz without changing the port. Compared to the general spiral inductor having a large difference depending on the port, it was confirmed that the influence on the port direction was small.

Design, Analysis, and Comparison of Symmetric Dual-level Spiral Inductors for RF Integrated Circuits (RF집적회로용 이중층 나선형 대칭구조 인덕터의 설계 및 비교 분석)

  • Ihm, Guk-Ju;Shin, So-Bong;Lee, Sang-Gug
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.10
    • /
    • pp.17-24
    • /
    • 2000
  • An area efficient and symmetric dual-level spiral inductor structure is proposed and evaluated in comparison with the conventional single-level spiral inductors. Contrary to the dual-level inductor mutual coupling coefficient of the upper-and lower-level inductors of the dual-level inductor increases with the increases in the number of turns. Because of this, for the same silicon area, the inductances of the dual-level incuctors are 2.5-4 times higher than that of the single-level inductor. Furthermore, the dual-level showed better quality factor that the single-level inductors for the same inductance. It is the intention of this paper to demonstrate that the dual-level can be more useful for the RF integrated circuits than the conventional single-level spiral inductors form the aspects of area efficiency and quality factor. The proposed dual-level inductors are designed and confirmed to be perfectly symmetric, and can also be used as a high-frequency choke.

  • PDF

The Current Detect of Single Phase Induction Motor Using Series Inductor (단상유도전동기의 입력단 직렬 인덕터를 이용한 전류검출)

  • Seo Kang-Sung;Park Su-Kang;Park Je-Woong;Kim Dae-Gon;Cho Geum-Bae;Baek Hyung-Lae
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.205-208
    • /
    • 2002
  • The single phase induction motor(SPIM) with two windings, main and auxiliary winding, is widely used due to ruggedness, low maintenance and simplicity of construction. There are several ways of starting single phase induction motor. The most common method is to use centrifugal switch that is connected in series with a capacitor. But the centrifugal switch that is the external starting system has many problems. In this paper, we use triac to overcome defects that happen by centrifugal switch, Also we used inductor that connected with main winding to get a gate trigger voltage signal. Experiments are focused on a capacitor starling single phase induction motor.

  • PDF