• Title/Summary/Keyword: Simulation model architecture

Search Result 1,035, Processing Time 0.03 seconds

Analysis of Tensor Processing Unit and Simulation Using Python (텐서 처리부의 분석 및 파이썬을 이용한 모의실행)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • The study of the computer architecture has shown that major improvements in price-to-energy performance stems from domain-specific hardware development. This paper analyzes the tensor processing unit (TPU) ASIC which can accelerate the reasoning of the artificial neural network (NN). The core device of the TPU is a MAC matrix multiplier capable of high-speed operation and software-managed on-chip memory. The execution model of the TPU can meet the reaction time requirements of the artificial neural network better than the existing CPU and the GPU execution models, with the small area and the low power consumption even though it has many MAC and large memory. Utilizing the TPU for the tensor flow benchmark framework, it can achieve higher performance and better power efficiency than the CPU or CPU. In this paper, we analyze TPU, simulate the Python modeled OpenTPU, and synthesize the matrix multiplication unit, which is the key hardware.

The Improvement of Disaster Safety Network using ICT Devices (ICT 기기를 활용한 재난안전통신망 강화 방안)

  • Hong, Sung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.194-199
    • /
    • 2019
  • Natural disasters destroy decades of human effort and investments, thereby placing new demands on society for reconstruction and rehabilitation. In most case, the natural phenomena triggering the disasters are beyond human control. In order to solve the problems that the information resources can not be shared among disaster management sectors and their work is hard to be coordinated in city, an idea of application of ubiquitous sense network and ICT technology to model the architecture of the disaster prevention system based on the analysis of characteristics of disasters. The proposed algorithm simulated that it is possible to locate the terminal by linking the direction angle and the estimated position that can be confirmed at the time of stopping, even if the movement direction of the terminal does not move in a certain direction with only a smaller number of mobile base stations. We also confirmed that the proposed algorithms analyzed through simulation are more efficient than existing algorithms.

A fast reconstruction technique for nonlinear ocean wave simulation (비선형 해양파 수치 모사를 위한 고속 재현 기법)

  • Lee, Sang-Beom;Choi, Young-Myung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • An improvement of computational resources with a large scale cluster service is available to the individual person, which has been limited to the original industry and research institute. Therefore, the application of powerful computational resources to the engineering design has been increased fast. In naval and marine industry, the application of Computational Fluid Dynamics, which requires a huge computational effort, to a design of ship and offshore structure has been increased. Floating bodies such as the ship or offshore structure is exposed to ocean waves, current and wind in the ocean, therefore the precise modelling of those environmental disturbances is important in Computational Fluid Dynamics. Especially, ocean waves has to be nonlinear rather than the linear model based on the superposition due to a nonlinear characteristics of Computational Fluid Dynamics. In the present study, a fast reconstruction technique is suggested and it is validated from a series of simulations by using the Computational Fluid Dynamics.

Non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers: A case study

  • Hongtao, Shen;Weicheng, Hu;Qingshan, Yang;Fucheng, Yang;Kunpeng, Guo;Tong, Zhou;Guowei, Qian;Qinggen, Xu;Ziting, Yuan
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.419-430
    • /
    • 2022
  • In wind-resistant designs, wind velocity is assumed to be a Gaussian process; however, local complex topography may result in strong non-Gaussian wind features. This study investigates the non-Gaussian wind features over complex terrain under atmospheric turbulent boundary layers by the large eddy simulation (LES) model, and the turbulent inlet of LES is generated by the consistent discretizing random flow generation (CDRFG) method. The performance of LES is validated by two different complex terrains in Changsha and Mianyang, China, and the results are compared with wind tunnel tests and onsite measurements, respectively. Furthermore, the non-Gaussian parameters, such as skewness, kurtosis, probability curves, and gust factors, are analyzed in-depth. The results show that the LES method is in good agreement with both mean and turbulent wind fields from wind tunnel tests and onsite measurements. Wind fields in complex terrain mostly exhibit a left-skewed Gaussian process, and it changes from a softening Gaussian process to a hardening Gaussian process as the height increases. A reduction in the gust factors of about 2.0%-15.0% can be found by taking into account the non-Gaussian features, except for a 4.4% increase near the ground in steep terrain. This study can provide a reference for the assessment of extreme wind loads on structures in complex terrain.

Hands-on Education Module for Modular Construction, 3D Design, and 4D Schedule

  • Kithas, Kyle A.;Choi, Jin Ouk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.484-491
    • /
    • 2022
  • A paradigm shift in teaching modular construction in higher education and K-12 is proposed as a means to increase the future adoption of the modular construction technique. To this effect, a new education module is presented to STEM educators. This education module is based on LEGOs and directed towards educators in the architecture, engineering, and construction (AEC) industry. The main objectives of the education module are to increase interest and knowledge of modular construction, acknowledge the benefits of using 3D design with 4D scheduling, and create a simulating hands-on educational opportunity. The education module is designed to allow participants to experience a hands-on simulation of modular construction and stick-built construction through building a LEGO project. Participants are challenged to find the advantages and disadvantages in both construction systems first-hand and record their findings. Results are presented from the preliminary testing of this education model on a group of construction management students at the University of Nevada, Las Vegas. Overall, the survey results showed that the LEGO education module was successful at achieving the project's three main objectives: 1) increasing the participants' interest and knowledge of modular construction through an interactive project; 2) increasing the participants' understanding of the benefits of 3D design with 4D scheduling over the use of 2D drawings; and 3) creating a simulating hands-on educational opportunity to help participants compare modular construction to stick-built construction. In the end, this proposed a new LEGO education module addressing the problems identified from this study with more participants.

  • PDF

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Dual-mode Pseudorandom Number Generator Extension for Embedded System (임베디드 시스템에 적합한 듀얼 모드 의사 난수 생성 확장 모듈의 설계)

  • Lee, Suk-Han;Hur, Won;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.95-101
    • /
    • 2009
  • Random numbers are used in many sorts of applications. Some applications, like simple software simulation tests, communication protocol verifications, cryptography verification and so forth, need various levels of randomness with various process speeds. In this paper, we propose a fast pseudorandom generator module for embedded systems. The generator module is implemented in hardware which can run in two modes, one of which can generate random numbers with higher randomness but which requires six cycles, the other providing its result within one cycle but with less randomness. An ASIP (Application Specific Instruction set Processor) was designed to implement the proposed pseudorandom generator instruction sets. We designed a processor based on the MIPS architecture,, by using LISA, and have run statistical tests passing the sequence of the Diehard test suite. The HDL models of the processor were generated using CoWare's Processor Designer and synthesized into the Dong-bu 0.18um CMOS cell library using the Synopsys Design Compiler. With the proposed pseudorandom generator module, random number generation performance was 239% faster than software model, but the area increased only 2.0% of the proposed ASIP.

A Cross-Layer based Video Transmission Scheme using Efficient Bandwidth Estimation in IEEE 802.11e EDCA (IEEE 802.11e EDCA에서 효율적인 대역폭 측정을 통한 Cross-Layer 기반의 비디오 전송 기법)

  • Shin, Pil-Gyu;Lee, Sun-Hun;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Promoting quality of streaming service in wireless networks has attracted intensive research over the years. Instable wireless channel condition causes high transmission delay and packet loss, due to fading and interference. Therefore, they lead to degrade quality of video streaming service. The IEEE 802.11 Working Group is currently working on a new standard called IEEE 802.11e to support quality of service in WLANs. And several schemes were proposed in order to guarantee QoS. However, they are not adaptable to network condition. Accordingly, they suffered video quality degradation, due to buffer overflow or packet loss. In this paper, to promote quality of video streaming service in WLANs, we propose a cross-layer architecture based on IEEE 802.11e EDCA model. Our cross-layer architecture provides differentiated transmission mechanism of IEEE 802.11e EDCA based on priority of MPEG-4 video frames and adaptively controls the transmission rate by dropping video frames through the efficient bandwidth estimation based on distinction of each AC. Through the simulation, proposed scheme is shown to be able to improve end-to-end qualify for video streaming service in WLANs.

A UTMI-Compatible USB2.0 Transceiver Chip Design (UTMI 표준에 부합하는 USB2.0 송수신기 칩 설계)

  • Nam Jang-Jin;Kim Bong-Jin;Park Hong-June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.31-38
    • /
    • 2005
  • The architecture and the implementation details of a UTMI(USB2.0 Transceiver Macrocell Interface) compatible USB2.0 transceiver chip were presented. To confirm the validation of the incoming data in noisy channel environment, a squelch state detector and a current mode Schmitt-trigger circuit were proposed. A current mode output driver to transmit 480Mbps data on the USB cable was designed and an on-die termination(ODT) which is controlled by a replica bias circuit was presented. In the USB system using plesiochronous clocking, to compensate for the frequency difference between a transmitter and a receiver, a synchronizer using clock data recovery circuit and FIFO was designed. The USB cable was modeled as the lossy transmission line model(W model) for circuit simulation by using a network analyzer measurements. The USB2.0 PHY chip was implemented by using 0.25um CMOS process and test results were presented. The core area excluding the IO pads was $0.91{\times}1.82mm^2$. The power consumptions at the supply voltage of 2.5V were 245mW and 150mW for high-speed and full-speed operations, respectively.

Design of 3-bit Arbitrary Logic Circuit based on Single Layer Magnetic-Tunnel-Junction Elements (단층 입력 구조의 Magnetic-Tunnel-Junction 소자를 이용한 임의의 3비트 논리회로 구현을 위한 자기논리 회로 설계)

  • Lee, Hyun-Joo;Kim, So-Jeong;Lee, Seung-Yeon;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.1-7
    • /
    • 2008
  • Magnetic Tunneling Junction (MTJ) has been used as a nonvolatile universal storage element mainly in memory technology. However, according to several recent studies, magneto-logic using MTJ elements show much potential in substitution for the transistor-based logic device. Magneto-logic based on MTJ can maintain the data during the power-off mode, since an MTJ element can store the result data in itself. Moreover, just by changing input signals, the full logic functions can be realized. Because of its programmability, it can embody the reconfigurable magneto-logic circuit in the rigid physical architecture. In this paper, we propose a novel 3-bit arbitrary magneto-logic circuit beyond the simple combinational logic or the short sequential one. We design the 3-bit magneto-logic which has the most complexity using MTJ elements and verify its functionality. The simulation results are presented with the HSPICE macro-model of MTJ that we have developed in our previous work. This novel magneto-logic based on MTJ can realize the most complex logic function. What is more, 3-bit arbitrary logic operations can be implemented by changing gate signals of the current drivel circuit.