Acknowledgement
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
- Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021a), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A.
- Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91, 2127-2142. https://doi.org/10.1007/s00419-020-01873-2.
- Aboueregal, A.E. and Sedighi, H.M. (2021b), "The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moor-Gibson-Thompson heat conduction model", Proceedings of the institution of mechanical engineers, part l: journal of materials: design and applications, 235(5), 1004-1020. https://doi.org/10.1177/1464420720985899.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/SCS.2020.35.6.729.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/SCS.2022.42.5.649.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.
- Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates", Compos. Struct., 45, 227-232. https://doi.org/10.1016/s0263-8223(99)00028-8.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/SEM.2022.81.6.705.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.
- Argyris, J. and Tanek, L. (1997), "Recent advances in computational thermo-structural analysis of composite plates and shells with strong nonlinearities", Appl. Mech. Review, 50(5), 285-306. https://doi.org/10.1115/1.3101708.
- Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2021), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Science., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/ANR.2022.12.1.037.
- Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 119-136. http://dx.doi.org/10.12989/amr.2018.7.2.119.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
- Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/SEM.2022.81.6.769.
- Bogdanovich, A.E. and Pastore, C.M. (1996), Mechanics of Textile and Laminated Composites with Applications to Structural Analysis, London: Chapman & Hall, 1996.
- Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley, 1960.
- Carrera, E. (2000), "An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multi-layered plates", J. Therm. Stress., 23(9), 797-831. https://doi.org/10.1080/014957300750040096.
- Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel and Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/SCS.2022.44.6.829.
- Cho, J.R. (2022a), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/SEM.2022.84.6.723.
- Cho, J.R. (2022b), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/SCS.2022.42.1.023.
- Choi, S-H., Heo, I., Kim, J.H., Jeong, H., Lee, J-Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-84. https://doi.org/10.12989/cac.2022.30.1.075.
- Cuong-Le, T., Ferreira, A.J.M. and Abdel Wahab, M. (2019b), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020b), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B Condensed Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020a), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Cuong-Le, T., Tran, L. V., Vu-Huu, T. and Abdel-Wahab, M. (2019a), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comp. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.
- Dewangan, H.C., Panda, S.K. and Hirwani, C.K. (2021), "Numerical deflection and stress prediction of cutout borne damaged composite flat/curved panel structure", Structures, 31, 660-670. https://doi.org/10.1016/j.istruc.2021.02.016.
- Dhotre, P.K. and Srinivasa, C.V. (2021), "On free vibration of laminated skew sandwich plates: A finite element analysis", Nonlinear Eng., 10(1), 66-76. https://doi.org/10.1515/nleng2021-0006.
- Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/SEM.2022.81.2.179.
- Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029.
- Ganapathi, M., Patel, B.P., Balamurgan, V. and Varma, D.R.S.V. (1996), "Thermal stress analysis of laminated composite plates using shear flexible element", Defense Sci. J., 46, 3-8. https://doi.org/10.14429/dsj.46.4037
- Ghafouri, M., Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2022), "Sound propagation of three-dimensional sandwich panels: influence of three-dimensional re-entrant auxetic core", AIAA Journal, 60(11), 6374-6384. https://doi.org/10.2514/1.J061219.
- Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/ANR.2022.12.1.101.
- Javani, M., Kiani, Y. and Eslami, M.R. (2021), "Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation", Compos. Struct., 261, 113515. https://doi.org/ 10.1016/j.compstruct.2020.113515.
- Jones, R.M. (1999), "Mechanics of Composite Materials", Taylor and Francis, London, 1999.
- Kaczkowski, Z. (1968), Plates-Statistical Calculations, Warsaw, Arkady.
- Kant, T., Pendhari, S.S. and Desai, Y.M. (2008), "An efficient semi-analytical model for composite and sandwich plates subjected to thermal load", J. Therm. Stresses, 31, 77-103. https://doi.org/10.1080/01495730701738264.
- Kapuria, S. and Achary, G.G.S. (2004), "An efficient higher order zigzag theory for laminated plates subjected to thermal loading", Int. J. Solids Structures, 1, 4661-4684.https://doi.org/10.1016/j.ijsolstr.2004.02.020.
- Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal bucklingbehaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. http://dx.doi.org/10.12989/amr.2017.6.4.349.
- Khatir, S., Tiachacht, S., Cuong-Le, T, Quoc Bui, T. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Khatir, S., Tiachacht, S., Cuong-Le, T., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/SEM.2022.82.4.477.
- Liu, J., Deng, X., Wang, Q., Zhong, R., Xiong, R. and Zhao, J. (2020), "A unified modeling method for dynamic analysis of GPL-reinforced FGP plate resting on Winkler-Pasternak foundation with elastic boundary conditions", Compos. Struct., 244, 112217. https://doi.org/10.1016/j.compstruct.2020.112217
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/ANR.2022.13.1.047.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/CAC.2022.30.2.151.
- Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001.
- Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87, 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.
- Mehar, K., Panda, S.K. and Dewangan, H.C. (2020), "Multiscale finite element prediction of thermomechanical flexural strength of nanotube-reinforced hybrid smart composite panel bonded with SMA fibre", Structures, 28, 2300-2310. https://doi.org/10.1016/j.istruc.2020.10.049.
- Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/SCS.2020.34.1.141.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
- Murakami, H. (1993), "Assessment of plate theories for treating the thermo-mechanical response of layered composite plates", Compos. Eng., 3, 137-149. https://doi.org/10.1016/0961-9526(93)90038-l.
- Noor, A.K. and Burton, W.S. (1992), "Computational models for high temperature multi layered composite plates and shells", Appl. Mech. Review, 45, 419-446. https://doi.org/10.1115/1.3119742.
- Nowacki, W. (1962), Thermelasticity, Addison-Wesley.
- Panc, V. (1975), Theories of Elastic Plates, Springer Science & Business Media.
- Pasternak, P.L. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture. Moscow.
- Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/CAC.2022.29.4.247.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., BachirBouiadjra, R. and Sekkal, M., Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/https://doi.org/10.12989/gae.2020.22.1.065.
- Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J Appl. Mech., 51, 745-52. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, New York, London, Tokyo.
- Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3(4), 475-493. https://doi.org/10.1080/01495738008926984.
- Reissner, E. (1974), "On tranverse bending of plates, including the effect of transverse shear deformation", http://dx.doi.org/10.1016/0020-7683(75)90030-X.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/SCS.2022.43.5.603.
- Rohwer, K., Rolfes, R. and Sparr, H. (2001), "Higher-order theories for thermal stresses in layered plate", Int. J. Solids Struct., 38, 3673-3687. https://doi.org/10.1016/S0020-7683(00)00249-3
- Savoia, M. and Reddy, J.N. (1995), "Three-dimensional analysis of laminated composite plates", Int. J. Solids Struct, 32(5), 593-608. https://doi.org/10.1016/0020-7683(94)00146-n.
- Seilsepour, H., Zarastvand, M. and Talebitooti, R. (2023), "Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core", J. Vib. Control, 29(5-6), 1076-1090. https://doi.org/10.1177/10775463211056758.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- Sharma, D. and Kaur, R. (2020), "Thermoelastic analysis of FGM hollow cylinder for variable parameters and temperature distributions using FEM", Nonlinear Eng., 9(1), 256-264. https://doi.org/10.1515/nleng-2020-0013.
- Talebitooti, R., Zarastvand, M. and Rouhani, A.H. (2019). "Investigating hyperbolic shear deformation theory on vibroacoustic behavior of the infinite functionally graded thick plate", Latin American J. Solids Struct., 16, https://doi.org/10.1590/1679-78254883.
- Tauchert, T.R. (1991), "Thermally induced flexure, buckling and vibration of plates", Appl. Mech. Review, 44, 347-360. https://doi.org/10.1115/1.3119508.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.
- Tran, T.T., Nguyen, P.C. and Pham, Q.H. (2021), "Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN", Case Studies in Therm. Eng., 24, 100852. https://doi.org/10.1016/j.csite.2021.100852.
- Tran, T.M. and Cuong-Le, T. (2022), "A Nonlocal IGA numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (p-sfgm) nanoplate", Int. J. Struct. Stabil. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930.
- Tungikar, V.B. and Rao, K.M. (1994), "Three dimensional exact solution of thermal stresses in rectangular composite laminate", Compos. Struct., 27, 419-430. https://doi.org/10.1016/0263-8223(94)90268-2.
- VeisiAra, A., Mohammad-Sedighi, H. and Reza, A. (2021), "Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach", J. Comput Des. Eng., 8(5), 1307-1331. https://doi.org/10.1093/jcde/qwab043.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Winkler, E. (1867), Die Lehre von Elastizitat und Festigkeit, Dominicus, Prague.
- Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/ANR.2022.12.6.617.
- Wu, Z., Cheng, Y.K., Lo, S.H. and Chen, W. (2007), "Thermal stress analysis for laminated plates using actual temperature field", Int. J. Mech. Sci., 49, 1276-1288. https://doi.org/10.1016/j.ijmecsci.2007.03.007.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
- Yaylaci, M., Abanoz, M., Yaylaci, E. U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct. Int. J., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661.
- Zarastvand, M.R., Asadijafari, M.H. and Talebitooti, R. (2022), "Acoustic wave transmission characteristics of stiffened composite shell systems with double curvature", Compos. Struct., 292, 115688. https://doi.org/10.1016/j.compstruct.2022.115688.
- Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading", Compos. Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012.
- Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhen, W. and Wanji, C. (2006), "An efficient higher-order theory and finite element for laminated plates subjected to thermal loading", Compos. Struct., 73, 99-109. https://doi.org/10.1016/j.compstruct.2005.01.034.
- Zhu, F-Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.