DOI QR코드

DOI QR Code

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara (Departement de Genie Civil, Faculte d'Architecture et de Genie Civil, Universite des Sciences et de la Technologie d'Oran) ;
  • Mohamed Sadoun (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie) ;
  • Mahmoud Mohamed Selim Saleh (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam Bin Abdulaziz University) ;
  • Abdelbaki Chikh (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Abdelhakim Kaci (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Fouad Bourada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Abdeldjebbar Tounsi (Industrial Engineering and Sustainable Development Laboratory, University of Relizane, Faculty of Science & Technology, Mechanical Engineering Department) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2021.11.26
  • Accepted : 2023.04.18
  • Published : 2023.06.25

Abstract

This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Keywords

Acknowledgement

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125. 
  2. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021a), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A. 
  3. Abouelregal, A.E., Mohammed, W.W. and Mohammad-Sedighi, H. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech., 91, 2127-2142. https://doi.org/10.1007/s00419-020-01873-2. 
  4. Aboueregal, A.E. and Sedighi, H.M. (2021b), "The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moor-Gibson-Thompson heat conduction model", Proceedings of the institution of mechanical engineers, part l: journal of materials: design and applications, 235(5), 1004-1020. https://doi.org/10.1177/1464420720985899. 
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175. 
  6. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421. 
  7. Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/SCS.2020.35.6.729. 
  8. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/SCS.2022.42.5.649. 
  9. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001. 
  10. Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), "A new theory for accurate thermal/mechanical flexural analysis of symmetric laminated plates", Compos. Struct., 45, 227-232. https://doi.org/10.1016/s0263-8223(99)00028-8. 
  11. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/SEM.2022.81.6.705. 
  12. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055. 
  13. Argyris, J. and Tanek, L. (1997), "Recent advances in computational thermo-structural analysis of composite plates and shells with strong nonlinearities", Appl. Mech. Review, 50(5), 285-306. https://doi.org/10.1115/1.3101708. 
  14. Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2021), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064. 
  15. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Science., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011. 
  16. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603. 
  17. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/ANR.2022.12.1.037. 
  18. Benhenni, M.A., Daouadji, T.H., Abbes, B., Adim, B., Li, Y. and Abbes, F. (2018), "Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates", Adv. Mater. Res., 7(2), 119-136. http://dx.doi.org/10.12989/amr.2018.7.2.119. 
  19. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223. 
  20. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/SEM.2022.81.6.769. 
  21. Bogdanovich, A.E. and Pastore, C.M. (1996), Mechanics of Textile and Laminated Composites with Applications to Structural Analysis, London: Chapman & Hall, 1996. 
  22. Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley, 1960. 
  23. Carrera, E. (2000), "An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multi-layered plates", J. Therm. Stress., 23(9), 797-831. https://doi.org/10.1080/014957300750040096. 
  24. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel and Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/SCS.2022.44.6.829. 
  25. Cho, J.R. (2022a), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/SEM.2022.84.6.723. 
  26. Cho, J.R. (2022b), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/SCS.2022.42.1.023. 
  27. Choi, S-H., Heo, I., Kim, J.H., Jeong, H., Lee, J-Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-84. https://doi.org/10.12989/cac.2022.30.1.075. 
  28. Cuong-Le, T., Ferreira, A.J.M. and Abdel Wahab, M. (2019b), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427. 
  29. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020b), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216. 
  30. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B Condensed Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726. 
  31. Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9. 
  32. Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020a), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0. 
  33. Cuong-Le, T., Tran, L. V., Vu-Huu, T. and Abdel-Wahab, M. (2019a), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comp. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028. 
  34. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631. 
  35. Dewangan, H.C., Panda, S.K. and Hirwani, C.K. (2021), "Numerical deflection and stress prediction of cutout borne damaged composite flat/curved panel structure", Structures, 31, 660-670. https://doi.org/10.1016/j.istruc.2021.02.016. 
  36. Dhotre, P.K. and Srinivasa, C.V. (2021), "On free vibration of laminated skew sandwich plates: A finite element analysis", Nonlinear Eng., 10(1), 66-76. https://doi.org/10.1515/nleng2021-0006. 
  37. Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127. 
  38. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/SEM.2022.81.2.179. 
  39. Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029. 
  40. Ganapathi, M., Patel, B.P., Balamurgan, V. and Varma, D.R.S.V. (1996), "Thermal stress analysis of laminated composite plates using shear flexible element", Defense Sci. J., 46, 3-8.  https://doi.org/10.14429/dsj.46.4037
  41. Ghafouri, M., Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2022), "Sound propagation of three-dimensional sandwich panels: influence of three-dimensional re-entrant auxetic core", AIAA Journal, 60(11), 6374-6384. https://doi.org/10.2514/1.J061219. 
  42. Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253. 
  43. Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043. 
  44. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/ANR.2022.12.1.101. 
  45. Javani, M., Kiani, Y. and Eslami, M.R. (2021), "Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation", Compos. Struct., 261, 113515. https://doi.org/ 10.1016/j.compstruct.2020.113515. 
  46. Jones, R.M. (1999), "Mechanics of Composite Materials", Taylor and Francis, London, 1999. 
  47. Kaczkowski, Z. (1968), Plates-Statistical Calculations, Warsaw, Arkady. 
  48. Kant, T., Pendhari, S.S. and Desai, Y.M. (2008), "An efficient semi-analytical model for composite and sandwich plates subjected to thermal load", J. Therm. Stresses, 31, 77-103. https://doi.org/10.1080/01495730701738264. 
  49. Kapuria, S. and Achary, G.G.S. (2004), "An efficient higher order zigzag theory for laminated plates subjected to thermal loading", Int. J. Solids Structures, 1, 4661-4684.https://doi.org/10.1016/j.ijsolstr.2004.02.020. 
  50. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal bucklingbehaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. http://dx.doi.org/10.12989/amr.2017.6.4.349. 
  51. Khatir, S., Tiachacht, S., Cuong-Le, T, Quoc Bui, T. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509. 
  52. Khatir, S., Tiachacht, S., Cuong-Le, T., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114. 
  53. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687. 
  54. Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/SEM.2022.82.4.477. 
  55. Liu, J., Deng, X., Wang, Q., Zhong, R., Xiong, R. and Zhao, J. (2020), "A unified modeling method for dynamic analysis of GPL-reinforced FGP plate resting on Winkler-Pasternak foundation with elastic boundary conditions", Compos. Struct., 244, 112217. https://doi.org/10.1016/j.compstruct.2020.112217 
  56. Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/ANR.2022.13.1.047. 
  57. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427. 
  58. Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/CAC.2022.30.2.151. 
  59. Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001. 
  60. Matsunaga, H. (2009), "Stress analysis of functionally graded plates subjected to thermal and mechanical loadings", Compos. Struct., 87, 344-357. https://doi.org/10.1016/j.compstruct.2008.02.002. 
  61. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181. 
  62. Mehar, K., Panda, S.K. and Dewangan, H.C. (2020), "Multiscale finite element prediction of thermomechanical flexural strength of nanotube-reinforced hybrid smart composite panel bonded with SMA fibre", Structures, 28, 2300-2310. https://doi.org/10.1016/j.istruc.2020.10.049. 
  63. Mercan, K., Ebrahimi, F. and Civalek, O. (2020), "Vibration of angle-ply laminated composite circular and annular plates", Steel Compos. Struct., 34(1), 141-154. https://doi.org/10.12989/SCS.2020.34.1.141. 
  64. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361. 
  65. Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023. 
  66. Murakami, H. (1993), "Assessment of plate theories for treating the thermo-mechanical response of layered composite plates", Compos. Eng., 3, 137-149. https://doi.org/10.1016/0961-9526(93)90038-l. 
  67. Noor, A.K. and Burton, W.S. (1992), "Computational models for high temperature multi layered composite plates and shells", Appl. Mech. Review, 45, 419-446. https://doi.org/10.1115/1.3119742. 
  68. Nowacki, W. (1962), Thermelasticity, Addison-Wesley.
  69. Panc, V. (1975), Theories of Elastic Plates, Springer Science & Business Media. 
  70. Pasternak, P.L. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture. Moscow. 
  71. Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/CAC.2022.29.4.247. 
  72. Rachedi, M.A., Benyoucef, S., Bouhadra, A., BachirBouiadjra, R. and Sekkal, M., Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/https://doi.org/10.12989/gae.2020.22.1.065. 
  73. Reddy, J.N. (1984), "A Simple Higher-Order Theory for Laminated Composite Plates", J Appl. Mech., 51, 745-52. https://doi.org/10.1115/1.3167719. 
  74. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, New York, London, Tokyo. 
  75. Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3(4), 475-493. https://doi.org/10.1080/01495738008926984. 
  76. Reissner, E. (1974), "On tranverse bending of plates, including the effect of transverse shear deformation", http://dx.doi.org/10.1016/0020-7683(75)90030-X. 
  77. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/SCS.2022.43.5.603. 
  78. Rohwer, K., Rolfes, R. and Sparr, H. (2001), "Higher-order theories for thermal stresses in layered plate", Int. J. Solids Struct., 38, 3673-3687.  https://doi.org/10.1016/S0020-7683(00)00249-3
  79. Savoia, M. and Reddy, J.N. (1995), "Three-dimensional analysis of laminated composite plates", Int. J. Solids Struct, 32(5), 593-608. https://doi.org/10.1016/0020-7683(94)00146-n. 
  80. Seilsepour, H., Zarastvand, M. and Talebitooti, R. (2023), "Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core", J. Vib. Control, 29(5-6), 1076-1090. https://doi.org/10.1177/10775463211056758. 
  81. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361. 
  82. Sharma, D. and Kaur, R. (2020), "Thermoelastic analysis of FGM hollow cylinder for variable parameters and temperature distributions using FEM", Nonlinear Eng., 9(1), 256-264. https://doi.org/10.1515/nleng-2020-0013. 
  83. Talebitooti, R., Zarastvand, M. and Rouhani, A.H. (2019). "Investigating hyperbolic shear deformation theory on vibroacoustic behavior of the infinite functionally graded thick plate", Latin American J. Solids Struct., 16, https://doi.org/10.1590/1679-78254883. 
  84. Tauchert, T.R. (1991), "Thermally induced flexure, buckling and vibration of plates", Appl. Mech. Review, 44, 347-360. https://doi.org/10.1115/1.3119508. 
  85. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053. 
  86. Tran, T.T., Nguyen, P.C. and Pham, Q.H. (2021), "Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN", Case Studies in Therm. Eng., 24, 100852. https://doi.org/10.1016/j.csite.2021.100852. 
  87. Tran, T.M. and Cuong-Le, T. (2022), "A Nonlocal IGA numerical solution for free vibration and buckling analysis of porous sigmoid functionally graded (p-sfgm) nanoplate", Int. J. Struct. Stabil. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930. 
  88. Tungikar, V.B. and Rao, K.M. (1994), "Three dimensional exact solution of thermal stresses in rectangular composite laminate", Compos. Struct., 27, 419-430. https://doi.org/10.1016/0263-8223(94)90268-2. 
  89. VeisiAra, A., Mohammad-Sedighi, H. and Reza, A. (2021), "Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach", J. Comput Des. Eng., 8(5), 1307-1331. https://doi.org/10.1093/jcde/qwab043. 
  90. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044. 
  91. Winkler, E. (1867), Die Lehre von Elastizitat und Festigkeit, Dominicus, Prague. 
  92. Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/ANR.2022.12.6.617. 
  93. Wu, Z., Cheng, Y.K., Lo, S.H. and Chen, W. (2007), "Thermal stress analysis for laminated plates using actual temperature field", Int. J. Mech. Sci., 49, 1276-1288. https://doi.org/10.1016/j.ijmecsci.2007.03.007. 
  94. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107. 
  95. Yaylaci, M., Abanoz, M., Yaylaci, E. U., Olmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct. Int. J., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661. 
  96. Zarastvand, M.R., Asadijafari, M.H. and Talebitooti, R. (2022), "Acoustic wave transmission characteristics of stiffened composite shell systems with double curvature", Compos. Struct., 292, 115688. https://doi.org/10.1016/j.compstruct.2022.115688. 
  97. Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading", Compos. Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012. 
  98. Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497. 
  99. Zhen, W. and Wanji, C. (2006), "An efficient higher-order theory and finite element for laminated plates subjected to thermal loading", Compos. Struct., 73, 99-109. https://doi.org/10.1016/j.compstruct.2005.01.034. 
  100. Zhu, F-Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.