• Title/Summary/Keyword: Simple sequence repeats (SSR)

Search Result 53, Processing Time 0.025 seconds

Genome Research on Peach and Pear

  • Hayashi, Tateki;Yamamoto, Toshiya
    • Journal of Plant Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.45-52
    • /
    • 2002
  • A lot of SSRs (simple sequence repeats) in peach and pear from enriched genomic libraries and in peach from a cDNA library were developed. These SSRs were applied to other related species, giving phenograms of 52 Prunes and 60 pear accessions. Apple SSRs could also be successfully used in Pyrus spp. Thirteen morphological traits were characterized on the basis of the linkage map obtained from an $F_2$ population of peach. This map was compiled with those morphological markers and 83 DNA markers, including SSR markers used as anchor loci, to compare different peach maps. Molecular markers tightly linked to new root-knot nematode resistance genes were also found. A linkage map including disease related genes, pear scab resistance and black spot susceptibility, in the Japanese pear Kinchaku were constructed using 118 RAPD markers. Another linkage map, of the European pear Bartlett, was also constructed with 226 markers, including 49 SSRs from pear, apple, peach and cherry. Maps of other Japanese pear cultivars, i.e., Kousui and Housui, were also constructed. These maps were the first results of pear species.

Genetic diversity and population structure of rice accessions from South Asia using SSR markers

  • Cui, Hao;Moe, Kyaw Thu;Chung, Jong-Wook;Cho, Young-Il;Lee, Gi-An;Park, Yong-Jin
    • Korean Journal of Breeding Science
    • /
    • v.42 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • The population structure of a domesticated species is influenced by the natural history of the populations of its pre-domesticated ancestors, as well as by the breeding system and complexity of breeding practices implemented by humans. In the genetic and population structure analysis of 122 South Asia collections using 29 simple sequence repeat (SSR) markers, 362 alleles were detected, with an average of 12.5 per locus. The average expected heterozygosity and polymorphism information content (PIC) for each SSR locus were 0.74 and 0.72,respectively. The model-based structure analysis revealed the presence of three clusters with the 91.8% (shared > 75%) membership, with 8.2% showing admixture. The genetic distances of Clusters 1-3 were 0.55, 0.56, and 0.68, respectively. Polymorphic information content followed the same trend (Cluster 3 had the highest value and Cluster 1 had smallest value), with genetic distances for each cluster of 0.52, 0.52, and 0.65, respectively. This result could be used for supporting rice breeding programs in South Asia countries.

Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis

  • Kim, Serim;Jeong, Ji Hee;Chung, Hee;Kim, Ji Hyeon;Gil, Jinsu;Yoo, Jemin;Um, Yurry;Kim, Ok Tae;Kim, Tae Dong;Kim, Yong-Yul;Lee, Dong Hoon;Kim, Ho Bang;Lee, Yi
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • In this study, we developed 15 novel polymorphic simple sequence repeat (SSR) markers by SSR-enriched genomic library construction from Codonopsis lanceolata. We obtained a total of 226 non-redundant contig sequences from the assembly process and designed primer sets. These markers were applied to 53 accessions representing the cultivated C. lanceolata in South Korea. Fifteen markers were sufficiently polymorphic, and were used to analyze the genetic relationships between the cultivated C. lanceolata. One hundred three alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. By cluster analysis, we detected clear genetic differences in most of the accessions, with genetic distance varying from 0.73 to 0.93. Phylogenic analysis indicated that the accessions that were collected from the same area were distributed evenly in the phylogenetic tree. These results indicate that there is no correlative genetic relationship between geographic areas. These markers will be useful in differentiating C. lanceolata genetic resources and in selecting suitable lines for a systemic breeding program.

Development of Multiplex Microsatellite Marker Set for Identification of Korean Potato Cultivars (국내 감자 품종 판별을 위한 다중 초위성체 마커 세트 개발)

  • Cho, Kwang-Soo;Won, Hong-Sik;Jeong, Hee-Jin;Cho, Ji-Hong;Park, Young-Eun;Hong, Su-Young
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.366-373
    • /
    • 2011
  • To analyze the genetic relationships among Korean potato cultivars and to develop cultivar identification method using DNA markers, we carried out genotyping using simple sequence repeats (SSR) analysis and developed multiplex-SSR set. Initially, we designed 92 SSR primer combinations reported previously and applied them to twenty four Korean potato cultivars. Among the 92 SSR markers, we selected 14 SSR markers based on polymorphism information contents (PIC) values. PIC values of the selected 14 markers ranged from 0.48 to 0.89 with an average of 0.76. PIC value of PSSR-29 was the lowest with 0.48 and PSSR-191 was the highest with 0.89. UPGMA clustering analysis based on genetic distances using 14 SSR markers classified 21 potato cultivars into 2 clusters. Cluster I and II included 16 and 5 cultivars, respectively. And 3 cultivars were not classified into major cluster group I and II. These 14 SSR markers generated a total of 121 alleles and the average number of alleles per SSR marker was 10.8 with a range from 3 to 34. Among the selected markers, we combined three SSR markers, PSSR-17, PSSR-24 and PSSR-24, as a multiplex-SSR set. This multiplex-SSR set used in the study can distinguish all the cultivars with one time PCR and PAGE (Polyacrylamide gel electrophoresis) analysis and PIC value of multiplex-SSR set was 0.95.

Genetic Diversity of High-Quality Rice Cultivars Based on SSR Markers Linked to Blast Resistance Genes (도열병 저항성 유전자와 연관된 SSR 마커를 이용한 양질미 품종의 유전적 다양성)

  • Huhn-Pal Moon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.251-255
    • /
    • 2004
  • The epidemics of rice blast which occurred in south parts of Korea during the period from 1999 to 2001 and damaged several high quality rice cultivars developed using "Milyang 95" and/or "Milyang 96" as a parent. Genetic diversity of 23 rice cultivars including "Milyang 95" and it's relatives was assessed using 54 simple sequence repeats (SSR) markers reported to be linked to major blast resistance genes. Fifty-four SSR markers representing fifty-seven loci in the rice genome detected polymorphism among the 23 cultivars and revealed a total of 170 alleles with an average of 3.0 alleles per primer, The number of amplified bands ranged from 1 to 7. Several SSR markers including RM249, RM206 and OSR20 were informative for assessing the genetic diversity of relatively closed japonica rice cultivars. The 23 cultivars were classified into four groups by cluster analysis based on Nei's genetic distances, and the cultivars developed from same parents showed a tendency to cluster together that is consistant with genealogical information. High quality rice cultivars, Daesanbyeo, Donganbyeo, and Milyang 95 belonged to the same cluster, At the loci, RM254 and OSR32, all of the cultivars derived from the crosses using "Milyang 95" shared same alleles, suggesting that these japonica cultivars might carry alleles that are identical by descent. Evaluation of 23 rice cultivars against blast needs to be confirmed regarding the relationship between genotype and blast resistance.p between genotype and blast resistance.

Genome Research on Peach and Pear

  • Hayashi Tateki;Yamamoto Toshiya
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.101-109
    • /
    • 2002
  • A lot of SSRs (simple sequence repeats) in peach and pear from enriched genomic libraries and in peach from a cDNA library were developed. These SSRs were applied to other related species, giving phenograms of 52 Prunus and 60 pear accessions. Apple SSRs could also be successfully used in Pyrus spp. Thirteen morphological traits were characterized on the basis of the linkage map obtained from an $F_2$ population of peach. This map was compiled with those morphological markers and 83 DNA markers, including SSR markers used as anchor loci, to compare different peach maps. Molecular markers tightly linked to new root-knot nematode resistance genes were also found. A linkage map including disease-related genes, pear scab resistance and black spot susceptibility, in the Japanese pear Kinchaku were constructed using 118 RAPD markers. Another linkage map, of the European pear Bartlett, was also constructed with 226 markers, including 49 SSRs from pear, apple, peach and chewy. Maps of other Japanese pear cultivars, i.e., Kousui and Housui, were also constructed. These maps were the first results of pear species.

  • PDF

Genome Research on Peach and Pear

  • Hayashi, Tateki;Yamamoto, Toshiya
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.101-109
    • /
    • 2002
  • A lot of SSRs (simple sequence repeats) in peach and pear from enriched genomic libraries and in peach from a cDHA library were developed. These SSRs were applied to other related species, giving phenograms of 52 Prunus and 60 pear accessions. Apple SSRs could also be successfully used in Pyrus spp. Thirteen morphological traits were characterized on the basis of the linkage map obtained from an Fa population of peach. This map was compiled with those morphological markers and 83 DHA markers, including SSR markers used as anchor loci, to compare different peach maps. Molecular markers tightly linked to new root-knot nematode resistance genes were also found. A linkage map including disease-related genes, pear scab resistance and black spot susceptibility, in the Japanese pear Kinchaku were constructed using 118 RAPD markers. Another linkage map, of the European pear Bartlett, was also constructed with 226 markers, including 49 SSRs from pear, apple, peach and cherry. Maps of other Japanese pear cultivars, i.e., Kousui and Housui, were also constructed. These maps were the first results of pear species.

  • PDF

Morphological Characteristics and Genetic Diversity Analysis of Platycodon grandiflorum (Jacq.) A. DC Determined Using SSR Markers (도라지 수집종의 형태적 특성과 SSR마커에 의한 유연관계 분석)

  • Um, Yurry;Lee, Yi;Jin, Mei-Lan;Lee, Dae Young;Lee, Jae Won;Kim, Geum Soog;Kim, Chang Kug;Hong, Chang Pyo;Kim, Ok Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background : Plant breeding requires the collection of genetically diverse genetic resources. Studies on the characteristics of Platycodon grandiflorum resources have not been carried out so far. The present study was carried out to discriminate P. grandiflorum based on morphological characteristics and genetic diversity using simple sequence repeat (SSR) markers. Methods and Results :We collected 11 P. grandiflorum cultivars: Maries II, Hakone double white, Hakone double blue, Fuji white, Fuji pink, Fuji blue, Astra white, Astra pink, Astra blue, Astra semi-double blue and Jangbaek. Analyses of the morphological characteristics of the collection were conducted for aerial parts (flower, stem and leaf) and underground parts (root). Next, the genetic diversity of all P. grandiflorum resources was analyzed using SSR markers employing the DNA fragment analysis method. We determined that the 11 P. grandiflorum cultivars analyzed could be classified by plant length, leaf number and root characteristic. Based on the genetic diversity analysis, these cultivars were classified into four distinct groups. Conclusions : These findings could be used for further research on cultivar development using molecular breeding techniques and for conservation of the genetic diversity of P. grandiflorum. Moreover, the markers could be used for genetic mapping of the plant and marker-assisted selection for crop breeding.

Linkage Analysis of both RAPD and I-SSR Markers using Haploid Genome from a Single Tree of Pinus densiflora S. et Z. (소나무 단일(單一) 모수(母樹)의 반수체(半數體) 게놈을 이용(利用)한 RAPD 및 I-SSR 표식자(標識子)의 연관분석(連關分析))

  • Hong, Yong-Pyo;Chung, Jae-Min;Kim, Yong-Yul;Jang, Suk-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.536-542
    • /
    • 2000
  • A linkage map for Japanese red pine (Pinus densiflora) was constructed on the basis of two DNA marker systems of random amplified polymorphic DNAs (RAPDs) and inter-simple sequence repeats (I-SSR). Haploid genomic DNAs were extracted from megagametophyte tissues of 96 individual seeds in a single tree. A total of 98 DNA markers including 52 RAPD markers amplified by 25 primers and 46 I-SSR markers amplified by 18 primers were verified as Mendelian loci showing 1 : 1 segregation in 96 megagametophytes which were ${\chi}^2$-tested at 5% significance level. Of them, 63 segregating loci turned out to be linked into 20 linkage groups by the two-point analysis. However, 35 loci (17 RAPD and 18 I-SSR) of the 98 segregating loci did not coalesced into any linkage groups at a LOD of 3.0. The linked 63 loci were separated by an average distance of about 25.5 cM, which were spanned 1097.8 cM as a whole. The minimum and maximum map distances of the linkage groups were 4.3 cM and 54.9 cM, respectively. Incorporation of I-SSR loi into linkage map of RAPD loci resulted in extended and partially more saturated linkage blocks.

  • PDF

Analysis of Microsatellite Patterns in the Genome of Red Sea Cucumber (홍해삼 유전체 분석에 의한 microsatellite의 분포도 연구)

  • Lee, Tae Wook;Kim, Sam Woong;Kim, Jung Sun;Chi, Won-Jae;Bang, Woo Young;Kim, Jang Hyeon;Yang, Chul Woong;Bang, Kyu Ho;Gal, Sang Wan
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.690-697
    • /
    • 2022
  • This study was conducted to analyze genome of red sea cucumber and to use it as basic data for the development of genetic markers for red sea cucumber. Microsatellite marker analysis of Ulleungdo_normal and Ulleungdo_native red sea cucumbers revealed that dinucleotide simple sequence repeats (SSRs) had the highest ratio, at 81.3~81.4%, and the number of the detected SSRs tended to decrease as the number of repeating sequence units in SSRs increased. In general, microsatellites with between 5 and 10 iterations were most common. As the size of the SSR repeating sequence units increased, the SSR iterations gradually decreased. The di-, tri-, and tetra-nucleotides in SSRs were detected in the highest numbers as (AT)5, (AAT)5, and (AAAT)5, respectively. (CG) and (CCG) had very low frequencies compared to the numbers of other repeating SSR units. The numbers of di-and tri-nucleotide repeats were up to 35 and 32, respectively, and then increased discontinuously up to 44 and 43 repeats, respectively. Tetra-, penta-, and hexa-nucleotides in SSRs occurred in numbers up to 25, 21 and 14, respectively. This analysis of red sea cucumber indicated that it maintains its own repetition sequence and repetition number; therefore, we suggest that using it as basic data for molecular marker will be possible in future research.