Genetic Diversity of High-Quality Rice Cultivars Based on SSR Markers Linked to Blast Resistance Genes

도열병 저항성 유전자와 연관된 SSR 마커를 이용한 양질미 품종의 유전적 다양성

  • Published : 2004.06.01

Abstract

The epidemics of rice blast which occurred in south parts of Korea during the period from 1999 to 2001 and damaged several high quality rice cultivars developed using "Milyang 95" and/or "Milyang 96" as a parent. Genetic diversity of 23 rice cultivars including "Milyang 95" and it's relatives was assessed using 54 simple sequence repeats (SSR) markers reported to be linked to major blast resistance genes. Fifty-four SSR markers representing fifty-seven loci in the rice genome detected polymorphism among the 23 cultivars and revealed a total of 170 alleles with an average of 3.0 alleles per primer, The number of amplified bands ranged from 1 to 7. Several SSR markers including RM249, RM206 and OSR20 were informative for assessing the genetic diversity of relatively closed japonica rice cultivars. The 23 cultivars were classified into four groups by cluster analysis based on Nei's genetic distances, and the cultivars developed from same parents showed a tendency to cluster together that is consistant with genealogical information. High quality rice cultivars, Daesanbyeo, Donganbyeo, and Milyang 95 belonged to the same cluster, At the loci, RM254 and OSR32, all of the cultivars derived from the crosses using "Milyang 95" shared same alleles, suggesting that these japonica cultivars might carry alleles that are identical by descent. Evaluation of 23 rice cultivars against blast needs to be confirmed regarding the relationship between genotype and blast resistance.p between genotype and blast resistance.

최근 비교적 재배면적이 넓은 일미벼, 대산벼, 동안벼와 이들의 모본들로 구성된 23품종의 유전적 다양성을 조사한 결과를 요약하면 다음과 같다. 1. 1999년에서 2001년에 잎도열병과 이삭도열병이 심하게 발병한 일미벼. 대산벼, 동안벼는 밀양95호를 모본으로 육성되었다. 2. 밀양95호를 모본으로 하는 품종들에 대해 SSR 마커를 이용하여 유전적 다양성을 조사한 결과 57개 유전자좌위에서 170개(평균 3.0개)의 alleles이 관찰되었으며 대립유전자수는 2개에서 7개까지 다양하였다. 특히, RM249, RM206, OSR20은 6개 이상의 대립유전자를 가져 근연의 자포니카 벼품종간의 유전적 다양성 평가에 유용하게 이용될 수 있을 것으로 판단된다. 3.증폭된 밴드의 유무를 바탕으로 품종간 유전적 거리를 산출하여 군집분석을 실시한 결과 크게 4개의 군으로 나뉘었으며 일미벼, 대산벼, 동안벼는 모본인 밀양95호와 유전적 배경이 매우 유사하였다. 4. 같은 계보상의 품종들에 대해 도열병 저항성 유전자 인근의 마커를 이용한 유전적 다양성 분석결과가 계보도와 일치하여 이들 품종들의 저항성 유전자형 또한 유사할 것으로 추청할 수 있었다. 5. 조사품종의 계보상의 allele 전이를 분석한 결과 11번 염색체의 RM254의 3번째 allele과 12번 염색체의 OSR32의 2번째 allele이 밀양95호로부터 계속 전이되었음을 알 수 있었으며 이들 alleles의 도열병 이병화와의 연관성 여부는 추후에 검토가 이루어져야할 것이다.

Keywords

References

  1. Ahn, S. N., Y. K. Kim, H. C. Hong, S. S. Han, S. J. Kwon, H. C. Choi, H. P. Moon, and S. R. McCouch. 2000. Molecular Mapping of a New Gene for Resistance to Rice Blast (Pyricularia gresea Sacc.). Euphytica 116: 17-22 https://doi.org/10.1023/A:1004045812357
  2. Causse, M. A., T.M. Fulton, Y. G. Cho, S. N. Ahn, J. Chunwongse, K. S. Wu, J. H. Xiao, Z. H. Yu, P. C. Ronald, S. E. Harrington, G. Second, S. R. McCouch, and S. D. Tanksley. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138 : 1251-1274
  3. Han, S. S., S. H. Choi, D. S. Ra, and M. Y. Eun. 1988. Analysis of rapid increase of rice blast fungus race Kl-409 in Korea. Korean J. Plant Phathology 14 : 705-709
  4. Han, S. S., J. D. Ryu, H. S. Shim, S. W. Lee, Y. K. Hong, and K. H. Cha. 2001. Breakdown of resistance of rice cultivars by new race Kl1117a and race distribution of rice blast fungus during 1999-2000 in Korea. Korean Research in Plant Disease 7(2) : 86-92
  5. Ji, H. S., H. J. Koh, S. U. Park, and S. R. McCouch. 1998. Varietal identification in japonica rice using microsatellite DNA markers. Korean J. Breeding 30(4) : 350-360
  6. Kim K. H., S. Y. Cho, H. P. Moon, and H. C. Choi. 1994. Breeding strategy for improvement and diversification of grain quality in rice (in Korean). Korean J. Breeding 26 (Supp. 2) : 3-19
  7. Kwon, S. J., S. N. Ahn, H. C. Hong, Y. C. Cho, J. P. Suh, Y. K. Kim, K. H. Kang, S. S. Han, H. C. Choi, H. P. Moon, and H. G. Hwang. 2002. Identification of DNA markers linked to resistance genes to rice blast (Pyricularia grisea Sacc.) Korean J. Breeding 34(2): 105-110
  8. Kwon, S. J., S. N. Ahn, H. C. Choi, and H. P. Moon. 1999. Evaluation of genetic relationship and fingerprinting of rice varieties using microsatellite and RAPD markers. Korean J. Crop Science 44(2) : 112-116
  9. Kwon, S. J., S. N. Ahn, J. P. Suh, Y. C. Cho, H. C. Hong, Y. K. Kim, H. G. Hwang, H. P. Moon, and H. C. Choi. 2000a. Genetic mapping and identification of QTLs related to agronomic traits in a japonica cross of rice. Proc. 1st Plant Mol. Genet. Breeding, Poster 12. Seoul Nat'l Univ., Suwon, Korea(Sept. 1, 2000)
  10. Kwon, S. J., S. N. Ahn, J. P Suh, H. C. Hong, Y. K. Kim, H. G. Hwang, H. P. Moon, and H. C. Choi. 2000b. Genetic diversity of Korean native rice varieties. Korean J. Breeding 32(2): 186-193
  11. Kwon, S. J., S. N. Ahn, C. I .Yang, H. C. Hong, Y. K. Kim, J. P. Suh, H. G. Hwang, H. P. Moon, and H. C. Choi. 2000c. Genetic diversity of Korean rice cultivars. In:Abstract. International Rice Genetics Symposium, International Rice Research Institute, Los Banos, Philippines, Oct. 2000. p41
  12. McCouch, S. R., S. Temnykh, A. Lukashova, J. Coburn, G. DeClerck, S. Cartinhour, S. Harrington, M. Thomson, E. Septiningsih, M. Semon, P. Moncada, and Li Jiming. 2001. Microsatellite markers in rice: abundance, diversity, and applications. In: Rice Genetics IV p 117-135
  13. National Academy of Sciences. 1972. Genetic vulnerability of major crops. National Academy of Science, Washington, DC.
  14. Nei, M. 1973. Analysis of gene diversity in subdivided population. Proc. Natl. Acad. Sci. U.S.A. 70(12): 3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  15. Olufowote, J. O., Y. Xu, X. Chen, W. D. Park, H. M. Beachell, R. H. Dilday, M. Goto, and S. R. McCouch. 1997. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40: 370-378 https://doi.org/10.1139/g97-050
  16. Panaud O., X. Chen, and S. R. McCouch. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Olyza sativa L.). Mol. Gen. Genet. 252 : 597-607
  17. Sebastian, L. S., L. R. Hipolito, and J. S. Garcia. 1998. Molecular marker analysis of the contribution made by landraces to modem Philippine rice cultivars. SABRAO J. Breed. and Genet. 30(2) : 73-82
  18. Temnykh, S., G. DeClerck, A. Lukashova, L. Lipovich, S. Cartinhour, and S. R. McCouch. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency length variation, transposon association, and genetic marker potential. Genome Res. 11:1441-1452 https://doi.org/10.1101/gr.184001
  19. Wu, K. S. and S. D. Tanksley. 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 241 : 225-235 https://doi.org/10.1007/BF00280220