Genetic diversity and population structure of rice accessions from South Asia using SSR markers

  • Cui, Hao (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Moe, Kyaw Thu (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Chung, Jong-Wook (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Cho, Young-Il (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Lee, Gi-An (National Agrobiodiversity Center, National Institute of Agricultural Biotechnology, RDA) ;
  • Park, Yong-Jin (Department of Plant Resources, College of Industrial Science, Kongju National University)
  • Received : 2010.03.15
  • Published : 20100300

Abstract

The population structure of a domesticated species is influenced by the natural history of the populations of its pre-domesticated ancestors, as well as by the breeding system and complexity of breeding practices implemented by humans. In the genetic and population structure analysis of 122 South Asia collections using 29 simple sequence repeat (SSR) markers, 362 alleles were detected, with an average of 12.5 per locus. The average expected heterozygosity and polymorphism information content (PIC) for each SSR locus were 0.74 and 0.72,respectively. The model-based structure analysis revealed the presence of three clusters with the 91.8% (shared > 75%) membership, with 8.2% showing admixture. The genetic distances of Clusters 1-3 were 0.55, 0.56, and 0.68, respectively. Polymorphic information content followed the same trend (Cluster 3 had the highest value and Cluster 1 had smallest value), with genetic distances for each cluster of 0.52, 0.52, and 0.65, respectively. This result could be used for supporting rice breeding programs in South Asia countries.

Keywords

Acknowledgement

Supported by : Rural Development Administration (RDA)

References

  1. Bao JS, Corke H & Sun M. 2002. Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theoretical and Applied Genetics 105: 898-905. https://doi.org/10.1007/s00122-002-1049-3
  2. Blair MW, Hedetale V, MeCouch SR. 2002. Fluorescent-labeled microsatellite panels useful for detecting allelic diversity in cultivated rice (Oryza sativa L.). Theor Appl Genet. 105:449-457. https://doi.org/10.1007/s00122-002-0921-5
  3. Chang TT. 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rice. Euphytica. 25:425-441. https://doi.org/10.1007/BF00041576
  4. Coburn JR, Temnykh SV, Paul EM, MeCouch SR. 2002. Design and application of rnicrosatellite marker panels for semiautomated genotyping of rice (Oryza sativa L.). Crop Sci. 42:2092-2099. https://doi.org/10.2135/cropsci2002.2092
  5. Crawford GW, Chen S. 1998. The origins of rice agriculture: recent progress in East Asia. Antiquity. 72:858-866.
  6. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  7. Flint-Garda SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman M, Buckler E. 2005. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44:1054-1064. https://doi.org/10.1111/j.1365-313X.2005.02591.x
  8. Garris AJ, Tai TH, Coburn JR, Kresovich S, McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics. 169:1631-1638.
  9. Jain S, Jain R, McCouch S. 2004. Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of Xuorescently-labeled microsatellite markers. Theor. Appl. Genet. 109:965-977. https://doi.org/10.1007/s00122-004-1700-2
  10. Khush GS. 1997. Origin, dispersal. cultivation and variation of rice. Plant Mol. Biol. 35:25-34. https://doi.org/10.1023/A:1005810616885
  11. Kwon SJ, Ahn SN, Yang CI, Hong HC, Kim YK, Suh JP, Hwang HG, Moon HP, Choi HC. 2000. Genetic diversity in Korean japonica rice cultivars. In Advance in rice genetics. Khush G. S., Brar D. S. and Hardy B., eds., Los Banos, Laguna, Philippines, pp. 186-188.
  12. Lee JK, Chung JW, Park YJ, Ma KH, Kang HK, Lee JR, Kwag JG, Kim NS, Kim TS and Lee SY. 2006. Assessment of genetic diversity of Korean land race rice accessions (Oryza sativa L.) by microsatellite analysis. Korean J. Breed. 38(2):75-82.
  13. Liu K, Muse SV. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  14. Liu KJ, Goodman M, Muse S, Smith JS, Buckler E. 2003. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics. 165:2117-2128.
  15. Lu BR, Snow AA. 2005. Gene now from genetically modified rice and its environmental consequences. BioScience. 55;669-678. https://doi.org/10.1641/0006-3568(2005)055[0669:GFFGMR]2.0.CO;2
  16. Lu H, Redus MA, Coburn JR, Rutger JN, McCouch SR, Tai TH. 2004. Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis. Crop Sci. 45:66-76.
  17. Ostrowski MF, David A, Santoni S, Mckhann H, Reboud X, Corre VL, Camilleri C, Brunel D, Bouchez D, Faure B, Bataillon T. 2006. Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol. Ecol. 15: 1507-1517. https://doi.org/10.1111/j.1365-294X.2006.02865.x
  18. Park YJ, Lee JK, Kim NS. 2009. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules. 14:4546-4569: doi: 10.3390/molecules14114546.
  19. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155:945-959.
  20. Saw OM, Doi K, Aye K, Irie K. Yoshimura A. 2006. Genetic diversity of Myanmar rice cultivars detected by DNA markers. J. Fac. Agr., Kyushu Univ., 51 (2):181-187.
  21. Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR products. Nature Biotechnology 18:233-234. https://doi.org/10.1038/72708
  22. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  23. Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TriJ, Silitonga TiurS, Susan RM. 2007. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor. Appl. Genet. 114:559-568. https://doi.org/10.1007/s00122-006-0457-1
  24. Vaughan DA, Morishima H, Kadowaki K. 2003. Diversity in the Oryza genus. Current Opinion in Plant Biology. 6:139-146. https://doi.org/10.1016/S1369-5266(03)00009-8
  25. Zhno W, Chung JW, Ma KH, Kim TS, Kim DS, Kim CH, Koo HM, Park YJ. 2009. Analysis of genetic diversity and population Structure of rice cultivars from Korea, China and Japan using SSR markers. Genes & Genomics. 31(4):283-292. https://doi.org/10.1007/BF03191201
  26. Zhu MY, Sang YY, Zhu YY, Lu BR. 2004. Estimating genetic diversity of rice landraces from Yunnan by SSR assay and its implication for conservation. Acta Bot. Sin. 46:1458-1467.