• Title/Summary/Keyword: Silicon probe tip

Search Result 30, Processing Time 0.025 seconds

Fabrication and Characterization of Silicon Probe Tip for Vertical Probe Card Using MEMS Technology

  • Kim, Young-Min;Yu, In-Sik;Lee, Jong-Hyun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.149-154
    • /
    • 2004
  • This paper presents a silicon probe tip for vertical probe card application. The silicon probe tip was fabricated using MEMS technology such as porous silicon micromachining and deep- RIE (reactive ion etching). The thickness of the silicon epitaxial layers was 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$, respectively. The width and length were 40 ${\mu}{\textrm}{m}$ and 600 ${\mu}{\textrm}{m}$, respectively. The probe structure was a multilayered structure and was composed of Au/Ni-Cr/Si$_3$N$_4$/n-epi layers. The height of the curled probe tip was measured as a function of the annealing temperature and time. Resistance characteristics of the probe tip were measured using a touchdown test.

Nano-wear Characteristics of Silicon Probe Tip for Probe Based Data Storage Technology (탐침형 정보저장 기술을 위한 실리콘 탐침의 나노 마멸 특성에 관한 연구)

  • 이용하;정구현;김대은;유진규;홍승범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.552-555
    • /
    • 2004
  • The reliability issue of the probe tip/recording media interface is one of the most crucial concerns in the Atomic Force Microscope (AFM)-based recording technology. In this work, the tribological characteristics of the probe/media interface were investigated by performing wear tests using an AFM. The ranges of applied normal load and sliding velocity for the wear test were 10 to 50nN and 2 to 20$\mu$m/s respectively. The damage of the probe tip was quantitatively as well as qualitatively characterized by Field Emission Scanning Probe Microscope (FESEM) analysis and calculated based on Archard s wear equation. It was shown that the wear coefficient of the probe tip was in the order of 10$^{-4}$ ~ 10$^{-3}$ , and significant contamination at the end of the probe tip was observed. Thus in order to implement the AFM-based recording technology, tribological optimization of the probe/media interface must be achieved.

  • PDF

Fabrication of Tip of Probe Card Using MEMS Technology (MEMS 기술을 이용한 프로브 카드의 탐침 제작)

  • Lee, Keun-Woo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.361-364
    • /
    • 2008
  • Tips of probe card were fabricated using MEMS technology. P-type silicon wafer with $SiO_2$ layer was used as a substrate for fabricating the probe card. Ni-Cr and Au used as seed layer for electroplating Ni were deposited on the silicon wafer. Line patterns for probing devices were formed on silicon wafer by electroplating Ni through mold which formed by MEMS technology. Bridge structure was formed by wet-etching the silicon substrate. AZ-1512 photoresist was used for protection layer of back side and DNB-H100PL-40 photoresist was used for patterning of the front side. The mold with the thickness of $60{\mu}m$ was also formed using THB-120N photoresist and probe tip with thickness of $50{\mu}m$ was fabricated by electroplating process.

Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage (초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발)

  • Jeon Jong-Up;Lee Chang-Soo;Choi Jae-Joon;Min Dong-Ki;Jeon Dong-Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.166-173
    • /
    • 2006
  • In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.

Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography (비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Kim, Tack-Hyun;Park, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Write Characteristics of Silicon Resistive Probe

  • Jung, Young-Ho;Kim, Jun-Soo;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.821-824
    • /
    • 2005
  • Probe storage is one of the strong candidates for future mobile storage device since it has potential of recording density over I $Tb/in^2$ with r/w speed over 100 Mbps. It also uses silicon-processing technology that suits the purpose of small form factor. In this paper, write characteristics of resistive probe that can rotate the field direction of PZT by field-induced resistance changes in a small resistive region at the apex of the tip will be presented. Also, the relationship between the size of tip and the available write width is investigated for different source bias conditions. For this study, two-dimensional computer simulation ($SILVACO^{TM}$) was performed. With optimum design, the width of the writing electric field can be smaller than 50nm

  • PDF

Design, Fabrication and Evaluation of Diamond Tip Chips for Reverse Tip Sample Scanning Probe Microscope Applications (탐침과 시편의 위치를 역전시킨 주사 탐침 현미경용 다이아몬드 탐침의 제작 및 평가)

  • Sugil Gim;Thomas Hantschel;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2024
  • Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.

Manipulation of Carbon Nanotube Tip Using Focused Ion Beam (집속이온빔을 이용한 탄소나노튜브 팁의 조작)

  • Yoon, Yeo-Hwan;Park, June-Ki;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.122-127
    • /
    • 2006
  • This paper reports on the development of carbon nanotube tip modified with focused ion beam(FIB). We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a metal-coated canning Probe Microscope (SPM) tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip was aligned toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for SPM.

Using Focus Ion Beam Carbon Nanotube Tip Manipulation (Focus Ion Beam을 이용한 탄소나노튜브 팁의 조작)

  • Yoon Y.H.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.461-462
    • /
    • 2006
  • This paper reports on the development of a scanning probe microscopy(SPM) tip with caborn nanotubes. We used an electric field which causes dielectrophoresis(DEP), to align and deposit CNTs on a metal-coated SPM tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip align toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for scanning probe microscopy.

  • PDF

Thermo-Piezoelectric Read/Write Mechanisms for Probe-Based Data Storage

  • Nam, Hyo-Jin;Kim, Young-Sik;Lee, Sun-Yong;Jin, Won-Hyeog;Jang, Seong-Soo;Cho, Il-Joo;Bu, Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • In this paper, a thermo-piezoelectric mechanism with integrated heaters and piezoelectric sensors has been studied for low power probe-based data storage. Silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been developed to improve the uniformity of cantilevers. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. And, the $34\times34$ probe array integrated with CMOS circuits has been successfully developed by simple one-step bonding process. The process can simplify the process step and reduce tip wear using silicon nitride tip.

  • PDF