• Title/Summary/Keyword: Silicon nitride film

Search Result 209, Processing Time 0.044 seconds

Oxygen Effect of SiOxNy Films by RF Sputter (RF sputter에 의한 SiNy막 제작에서의 산소 주입효과)

  • 임성환
    • Electrical & Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1989
  • Silicon Nitride, Silicon OxyNitride, Silicon Oxide film을 RF Sputter법으로 제작하였다. RF power 1kw에서 산소 공급량과 기관온도에 따라 제작된 막의 조성을 ESCA로 분석하였으며 산소 공급량과 기판온도의 증가에 따라 막에서의 산소함량이 크게 증가하였다. 또한 막의 밀도, 굴절율, 유전율은 산소함량의 증가에 따라 감소하였고 분극율은 Clausius-Mossotti방정식에서 얻을 수 있었다.

  • PDF

A Study on the New Isolation Technology to Improve the Bird's Beak and the Device Characteristics (Bird's Beak 및 소자특성 개선을 위한 새로운 Isolation 기술에 대한 연구)

  • 남명철;김현철;김철성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.106-114
    • /
    • 1994
  • The local oxidation of silicon (LOCOS) technology, which uses a silicon nitride film as an oxidation mask and a pad oxide beween the silicon nitride and the silicon substrate, has been widely used in integrated circuits for process simplicity. But, due to long brid's beak length, there are difficulties in scabilities. Many advanced isolation techniques have been wuggested for the feduction of bird's beak length. In this paper, we presented reduced bird's beak length using the polybuffered oxide and the silicon nitride as the sidewall. Also, investigating the electrical behavior of the parasitic Al-gate MOSFET on LOCOS, we proved the validity for new isolation process.

  • PDF

A Comparative Study on the Precursors for the Atomic Layer Deposition of Silicon Nitride Thin Films (원료물질에 따른 실리콘 질화막의 원자층 증착 특성 비교)

  • Lee Won-Jun;Lee Joo-Hyeon;Lee Yeon-Seong;Rha Sa-Kyun;Park Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.141-145
    • /
    • 2004
  • Silicon nitride thin films were deposited by atomic layer deposition (ALD) technique in a batch-type reactor by alternating exposures of precursors. XJAKO200414714156408$_4$ or$ SiH_2$$Cl_2$ was used as the Si precursor, $NH_3$ was used as the N precursor, and the deposited films were characterized comparatively. The thickness of the film linearly increased with the number of deposition cycles, so that the thickness of the film can be precisely controlled by adjusting the number of cycles. As compared with the deposition using$ SiCl_4$, the deposition using $SiH_2$$Cl_2$ exhibited larger deposition rate at lower precursor exposures, and the deposited films using $SiH_2$$Cl_2$ had lower wet etch rate in a diluted HF solution. Silicon nitride films with the Si:N ratio of approximately 1:1 were obtained using either Si precursors at $500^{\circ}C$, however, the films deposited using $SiH_2$$Cl_2$ exhibited higher concentration of H as compared with those of the $SiC_4$ case. Silicon nitride thin films deposited by ALD showed similar physical properties, such as composition or integrity, with the silicon nitride films deposited by low-pressure chemical vapor deposition, lowering deposition temperature by more than $200^{\circ}C$.

Low-Temperature Processing of Amorphous Silicon and Silicon-Nitride Films Using PECVD Method (플라즈마 화학기상증착법을 이용한 비정질 규소 및 질화규소의 저온성막 연구)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1013-1019
    • /
    • 2007
  • Amorphous silicon and silicon-nitride films were deposited using plasma-enhanced chemical vapor deposition (PECVD) method at $150^{\circ}C$. As fraction of $H_2$ in source gas was increased, characteristics of low-temperature silicon-nitride films approached those of conventional high-temperature films; the refractive index approached 1.9 and the ratio of nitrogen-hydrogen bonds to silicon-hydrogen bonds increased. And also, as fraction of $H_2$ in source gas was increased, characteristics of low-temperature silicon films approached those of conventional high-temperature films; refractive index and optical band gap approached 4.2 and 1.8 eV, and $[Si-H]/([Si-H]+[Si-H_2])$ increased. Lower RF power and process-pressure made the amorphous silicon films to be better properties. Increase of $H_2$ ratio seemed as the common factor to get reliable amorphous silicon and silicon-nitride films for thin-film-transistors (TFTs) at low temperature.

  • PDF

Effect of Composition on Electrical Properties of Multifunctional Silicon Nitride Films Deposited at Temperatures below 200℃ (200℃ 이하 저온 공정으로 제조된 다기능 실리콘 질화물 박막의 조성이 전기적 특성에 미치는 영향)

  • Keum, Ki-Su;Hwang, Jae Dam;Kim, Joo Youn;Hong, Wan-Shick
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2012
  • Electrical properties as a function of composition in silicon nitride ($SiN_x$) films grown at low temperatures ($<200^{\circ}C$) were studied for applications to photonic devices and thin film transistors. Both silicon-rich and nitrogen-rich compositions were successfully produced in final films by controlling the source gas mixing ratio, $R=[(N_2\;or\;NH_3)/SiH_4]$, and the RF plasma power. Depending on the film composition, the dielectric and optical properties of $SiN_x$ films varied substantially. Both the resistivity and breakdown field strength showed the maximum value at the stoichiometric composition (N/Si = 1.33), and degraded as the composition deviated to either side. The electrical properties degraded more rapidly when the composition shifted toward the silicon-rich side than toward the nitrogen-rich side. The composition shift from the silicon-rich side to the nitrogen-rich side accompanied the shift in the photoluminescence characteristic peak to a shorter wavelength, indicating an increase in the band gap. As long as the film composition is close to the stoichiometry, the breakdown field strength and the bulk resistivity showed adequate values for use as a gate dielectric layer down to $150^{\circ}C$ of the process temperature.

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells (결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구)

  • Lee, Kyung-Dong;Kim, Young-Do;Dahiwale, Shailendra S.;Boo, Hyun-Pil;Park, Sung-Eun;Tark, Sung-Ju;Kim, Dong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

Analysis of Trap Dependence on Charge Trapping Layer Thickness in SONOS Flash Memory Devices Based on Charge Retention Model (전하보유모델에 기초한 SONOS 플래시 메모리의 전하 저장층 두께에 따른 트랩 분석)

  • Song, Yu-min;Jeong, Junkyo;Sung, Jaeyoung;Lee, Ga-won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.134-137
    • /
    • 2019
  • In this paper, the data retention characteristics were analyzed to find out the thickness effect on the trap energy distribution of silicon nitride in the silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices. The nitride films were prepared by low pressure chemical vapor deposition (LPCVD). The flat band voltage shift in the programmed device was measured at the elevated temperatures to observe the thermal excitation of electrons from the nitride traps in the retention mode. The trap energy distribution was extracted using the charge decay rates and the experimental results show that the portion of the shallow interface trap in the total nitride trap amount including interface and bulk trap increases as the nitride thickness decreases.

Line-shaped superconducting NbN thin film on a silicon oxide substrate

  • Kim, Jeong-Gyun;Suh, Dongseok;Kang, Haeyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.20-25
    • /
    • 2018
  • Niobium nitride (NbN) superconducting thin films with the thickness of 100 and 400 nm have been deposited on the surfaces of silicon oxide/silicon substrates using a sputtering method. Their superconducting properties have been evaluated in terms of the transition temperature, critical magnetic field, and critical current density. In addition, the NbN films were patterned in a line with a width of $10{\mu}m$ by a reactive ion etching (RIE) process for their characterization. This study proves the applicability of the standard complementary metal-oxide-semiconductor (CMOS) process in the fabrication of superconducting thin films without considerable degradation of superconducting properties.

Physical properties and electrical characteristic analysis of silicon nitride deposited by PECVD using $N_2$ and $SiH_4$ gases ($N_2$$SiH_4$ 가스를 사용하여 PECVD로 증착된 Silicon Nitride의 물성적 특성과 전기적 특성에 관한 연구)

  • Ko, Jae-Kyung;Kim, Do-Young;Park, Joong-Hyun;Park, Sung-Hyun;Kim, Kyung-Hae;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.83-87
    • /
    • 2002
  • Plasma enhanced chemical vapor deposited (PECVD) silicon nitride ($SiN_X$) is widely used as a gate dielectric material for the hydrogenated amorphous silicon(a-Si:H) thin film transistors (TFT's). We investigated $SiN_X$ films were deposited PECVD at low temperature ($300^{\circ}C$). The reaction gases were used pure nitrogen and a helium diluted of silane gas(20% $SiH_4$, 80% He). Experimental investigations were carried out with the variation of $N_2/SiH_4$ flow ratios from 3 to 50 and the rf power of 200 W. This article presents the $SiN_X$ gate dielectric studies in terms of deposition rate, hydrogen content, etch rate and C-V, leakage current density characteristics for the gate dielectric layer of thin film transistor applications. Electrical properties were analyzed through high frequency (1MHz) C-V and current-voltage (I-V) measurements. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment.

  • PDF

Synthesis of silicon nitride thin film using pulsed DC magnetron sputtering on polymer substrates (Pulsed DC 마그네트론 스퍼터링을 이용한 $SiN_x$ 합성)

  • Jeon, A-Ram;Geum, Min-Jong;Sin, Gyeong-Sik;Lee, Gyo-Ung;Han, Jeon-Geon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.109-111
    • /
    • 2007
  • Pulsed DC 마그네트론 스퍼터링 장치를 이용하여 Polymer 및 Glass 기판 위에 $SiN_{\chi}$ (Silicon Nitride) 박막을 합성 시키고 이들의 구조적, 광학적 특성을 조사하였다. 막두께는 100 nm로 고정하였으며, power mode 및 질소 가스 유량비를 변수로 합성하였다.

  • PDF