Browse > Article
http://dx.doi.org/10.9714/psac.2018.20.4.020

Line-shaped superconducting NbN thin film on a silicon oxide substrate  

Kim, Jeong-Gyun (Department of Energy Science, Sungkyunkwan University)
Suh, Dongseok (Department of Energy Science, Sungkyunkwan University)
Kang, Haeyong (Department of Physics, Pusan National University)
Publication Information
Progress in Superconductivity and Cryogenics / v.20, no.4, 2018 , pp. 20-25 More about this Journal
Abstract
Niobium nitride (NbN) superconducting thin films with the thickness of 100 and 400 nm have been deposited on the surfaces of silicon oxide/silicon substrates using a sputtering method. Their superconducting properties have been evaluated in terms of the transition temperature, critical magnetic field, and critical current density. In addition, the NbN films were patterned in a line with a width of $10{\mu}m$ by a reactive ion etching (RIE) process for their characterization. This study proves the applicability of the standard complementary metal-oxide-semiconductor (CMOS) process in the fabrication of superconducting thin films without considerable degradation of superconducting properties.
Keywords
niobium nitride; superconducting thin film; sputtering deposition; Ar Etching. Critical Temperature; critical field; critical current density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, et al., "Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications," Supercond. Sci. Technol., Vol. 24, pp. 035016, 2011.   DOI
2 F. Marsili, A. Gaggero, L. H. Li, A. Surrente, R. Leoni, et al., "High quality superconducting NbN thin films on GaAs," Supercond. Sci. Technol., Vol. 22, pp. 095013, 2009.   DOI
3 P. Khosropanah, J. R. Gao, W. M. Laauwen, M. Hajenius and T. M. Klapwijk, "Low noise NbN hot electron bolometer mixer at 4.3THz," Appl. Phys. Lett., Vol. 91, pp. 221111, 2007.   DOI
4 Y. Nakamura, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, et al., "Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions," Appl. Phys. Lett., Vol. 99, pp. 212502, 2011.   DOI
5 R. Sanjines, M. Benkahoul, M. Papagno, F. Levy and D. Music, "Electronic structure of Nb2N' NbN thin films," J. Appl. Phys., Vol. 99, pp. 044911, 2006.   DOI
6 G. i. Oya and Y. Onodera, "Phase transformations in nearly stoichiometric NbNx," J. Appl. Phys., Vol. 47, pp. 2833-2840, 1976.   DOI
7 A. E. Dane, Reactive DC magnetron sputtering of ultrathin superconducting niobium nitride films. Massachusetts Institute of Technology, 2015.
8 T. Shiino, S. Shiba, N. Sakai, T. Yamakura, L. Jiang, et al., "Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer," Supercond. Sci. Technol., Vol. 23, pp. 045004, 2010.   DOI
9 A. Bhat, X. Meng, A. Wong and T. Van Duzer, "Superconducting NbN films grown using pulsed laser deposition for potential application in internally shunted Josephson junctions," Supercond. Sci. Technol., Vol. 12, pp. 1030-1032, 1999.   DOI
10 G. Saraswat, P. Gupta, A. Bhattacharya and P. Raychaudhuri, "Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene," APL Mater., Vol. 2, pp. 056103, 2014.   DOI
11 W. M. Roach, J. R. Skuza, D. B. Beringer, Z. Li, C. Clavero, et al., "NbN thin films for superconducting radio frequency cavities," Supercond. Sci. Technol., Vol. 25, pp. 125016, 2012.   DOI
12 T. Yamashita, K. Hamasaki, Y. Kodaira and T. Komata, "Nano-meter bridge with epitaxially deposited NbN on MgO film," IEEE Trans. Magn., Vol. 21, pp. 932-934, 1985.   DOI
13 M. Ukibe and G. Fujii, "Superconducting Characteristics of NbN Films Deposited by Atomic Layer Deposition," IEEE Trans. Appl. Supercond., Vol. 27, pp. 1-4, 2017.
14 D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet, et al., "Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition," Supercond. Sci. Technol., Vol. 29, pp. 105011, 2016.   DOI
15 G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, et al., "Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique," Chem. Commun. (Camb.), Vol. pp. 6022-6024, 2008.
16 J. R. Gao, M. Hajenius, F. D. Tichelaar, T. M. Klapwijk, B. Voronov, et al., "Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate," Appl. Phys. Lett., Vol. 91, pp. 062504, 2007.   DOI
17 S. H. Bedorf, Development of ultrathin niobium nitride and niobium titanium nitride films for THz hot-electron bolometers. Universitat zu Koln, 2005.
18 C. Delacour, B. Pannetier, J. C. Villegier and V. Bouchiat, "Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection," Nano Lett., Vol. 12, pp. 3501-3506, 2012.   DOI
19 C. M. Natarajan, M. G. Tanner and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics and applications," Supercond. Sci. Technol., Vol. 25, pp. 063001, 2012.   DOI
20 O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, et al., "Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths," Sci. Rep., Vol. 5, pp. 10941, 2015   DOI
21 J. A. O'Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, et al., "Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector," Appl. Phys. Lett., Vol. 98, pp. 201116, 2011.   DOI
22 P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, et al., "Superconducting single-photon detectors integrated with diamond nanophotonic circuits," Light Sci. Appl., Vol. 4, pp. e338, 2015.   DOI
23 R. Jha and V. Awana, "Control of sputtering parameters for deposition of NbN thick films," Novel Supercond. Mater., Vol. 1, pp. 7-12, 2015.
24 D. H. Youn, G. Bae, S. Han, J. Y. Kim, J.-W. Jang, et al., "A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT-graphene hybrid support," J. Mater. Chem. A, Vol. 1, pp. 8007-8015, 2013.   DOI
25 J.-G. Kim, H. Kang, Y. Lee, J. Park, J. Kim, et al., "Carbon-Nanotube-Templated, Sputter-Deposited, Flexible Superconducting NbN Nanowire Yarns," Adv. Funct. Mater., Vol. 27, pp. 1701108, 2017.   DOI
26 Z. Feng, J. Yuan, G. He, W. Hu, Z. Lin, et al., "Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition," Sci. Rep., Vol. 8, pp. 4039, 2018.   DOI