DOI QR코드

DOI QR Code

Line-shaped superconducting NbN thin film on a silicon oxide substrate

  • Kim, Jeong-Gyun (Department of Energy Science, Sungkyunkwan University) ;
  • Suh, Dongseok (Department of Energy Science, Sungkyunkwan University) ;
  • Kang, Haeyong (Department of Physics, Pusan National University)
  • Received : 2018.11.16
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

Niobium nitride (NbN) superconducting thin films with the thickness of 100 and 400 nm have been deposited on the surfaces of silicon oxide/silicon substrates using a sputtering method. Their superconducting properties have been evaluated in terms of the transition temperature, critical magnetic field, and critical current density. In addition, the NbN films were patterned in a line with a width of $10{\mu}m$ by a reactive ion etching (RIE) process for their characterization. This study proves the applicability of the standard complementary metal-oxide-semiconductor (CMOS) process in the fabrication of superconducting thin films without considerable degradation of superconducting properties.

Keywords

CJJOCB_2018_v20n4_20_f0001.png 이미지

Fig. 1. Temperature dependence curves of normalized resistance for different NbN film thicknesses. The inset data shows the values of critical temperature, T90% , and T10%. These are defined as the values at R(T90%) = 0.9R(20 K), and R(T10%) = 0.1R(20 K), respectively.

CJJOCB_2018_v20n4_20_f0002.png 이미지

Fig. 2. Superconducting properties of NbN-patterned film with a thickness of 400 nm. (a) Temperature dependence of resistance at different magnetic fields. The inset image shows a patterned film with dimensions of 10 μm (width) × 1 cm (length) × 400 nm (thickness). (b) Magnetic field dependence of resistance at different temperatures. (c) H-T phase diagram for a 400nm thick NbN film. The two values of critical magnetic field, H90% and H10%, are defined as the values at R(H90%, T) = 0.9R(20 K) and R(H10%, T) = 0.1R(20 K), respectively.

CJJOCB_2018_v20n4_20_f0003.png 이미지

Fig. 3. Superconducting properties of NbN-patterned film with a thickness of 100 nm. (a) Resistance as a function of temperature at different magnetic fields. The inset shows the optic image of a patterned film with 10 μm (width) × 1 cm (length) × 100 nm (thickness). (b) Magnetic field dependence of resistance at different temperatures. (c) H-T phase diagram for a 100nm thick NbN film. The same definition as Fig.2 is used for critical magnetic fields.

CJJOCB_2018_v20n4_20_f0004.png 이미지

Fig. 4. Critical current of NbN-patterned film with a thickness of 400 nm. I–V characteristics at (a) various temperatures and (b) various magnetic fields. The critical current as a function of (c) temperature and (d) magnetic field. The critical current is defined as the value where the voltage becomes 5μV.

CJJOCB_2018_v20n4_20_f0005.png 이미지

Fig. 5. Critical current of NbN-patterned film with a 100 nm thickness. I–V characteristics under (a) various temperatures and (b) various magnetic fields, respectively. The dependence of critical current on (c) temperature and (d) magnetic field, respectively.

TABLE 1 COMPARISON OF CRITICAL TEMPERATURE OF NBN THIN FILMS UNDER VARIOUS DEPOSITION CONDITIONS.

CJJOCB_2018_v20n4_20_t0001.png 이미지

References

  1. D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, et al., "Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications," Supercond. Sci. Technol., Vol. 24, pp. 035016, 2011. https://doi.org/10.1088/0953-2048/24/3/035016
  2. F. Marsili, A. Gaggero, L. H. Li, A. Surrente, R. Leoni, et al., "High quality superconducting NbN thin films on GaAs," Supercond. Sci. Technol., Vol. 22, pp. 095013, 2009. https://doi.org/10.1088/0953-2048/22/9/095013
  3. P. Khosropanah, J. R. Gao, W. M. Laauwen, M. Hajenius and T. M. Klapwijk, "Low noise NbN hot electron bolometer mixer at 4.3THz," Appl. Phys. Lett., Vol. 91, pp. 221111, 2007. https://doi.org/10.1063/1.2819534
  4. Y. Nakamura, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, et al., "Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions," Appl. Phys. Lett., Vol. 99, pp. 212502, 2011. https://doi.org/10.1063/1.3663539
  5. R. Sanjines, M. Benkahoul, M. Papagno, F. Levy and D. Music, "Electronic structure of Nb2N' NbN thin films," J. Appl. Phys., Vol. 99, pp. 044911, 2006. https://doi.org/10.1063/1.2173039
  6. G. i. Oya and Y. Onodera, "Phase transformations in nearly stoichiometric NbNx," J. Appl. Phys., Vol. 47, pp. 2833-2840, 1976. https://doi.org/10.1063/1.323080
  7. A. E. Dane, Reactive DC magnetron sputtering of ultrathin superconducting niobium nitride films. Massachusetts Institute of Technology, 2015.
  8. T. Shiino, S. Shiba, N. Sakai, T. Yamakura, L. Jiang, et al., "Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer," Supercond. Sci. Technol., Vol. 23, pp. 045004, 2010. https://doi.org/10.1088/0953-2048/23/4/045004
  9. A. Bhat, X. Meng, A. Wong and T. Van Duzer, "Superconducting NbN films grown using pulsed laser deposition for potential application in internally shunted Josephson junctions," Supercond. Sci. Technol., Vol. 12, pp. 1030-1032, 1999. https://doi.org/10.1088/0953-2048/12/11/401
  10. G. Saraswat, P. Gupta, A. Bhattacharya and P. Raychaudhuri, "Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene," APL Mater., Vol. 2, pp. 056103, 2014. https://doi.org/10.1063/1.4875356
  11. W. M. Roach, J. R. Skuza, D. B. Beringer, Z. Li, C. Clavero, et al., "NbN thin films for superconducting radio frequency cavities," Supercond. Sci. Technol., Vol. 25, pp. 125016, 2012. https://doi.org/10.1088/0953-2048/25/12/125016
  12. T. Yamashita, K. Hamasaki, Y. Kodaira and T. Komata, "Nano-meter bridge with epitaxially deposited NbN on MgO film," IEEE Trans. Magn., Vol. 21, pp. 932-934, 1985. https://doi.org/10.1109/TMAG.1985.1063621
  13. M. Ukibe and G. Fujii, "Superconducting Characteristics of NbN Films Deposited by Atomic Layer Deposition," IEEE Trans. Appl. Supercond., Vol. 27, pp. 1-4, 2017.
  14. D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet, et al., "Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition," Supercond. Sci. Technol., Vol. 29, pp. 105011, 2016. https://doi.org/10.1088/0953-2048/29/10/105011
  15. G. Zou, M. Jain, H. Zhou, H. Luo, S. A. Baily, et al., "Ultrathin epitaxial superconducting niobium nitride films grown by a chemical solution technique," Chem. Commun. (Camb.), Vol. pp. 6022-6024, 2008.
  16. J. R. Gao, M. Hajenius, F. D. Tichelaar, T. M. Klapwijk, B. Voronov, et al., "Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate," Appl. Phys. Lett., Vol. 91, pp. 062504, 2007. https://doi.org/10.1063/1.2766963
  17. S. H. Bedorf, Development of ultrathin niobium nitride and niobium titanium nitride films for THz hot-electron bolometers. Universitat zu Koln, 2005.
  18. C. Delacour, B. Pannetier, J. C. Villegier and V. Bouchiat, "Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: application to single photon detection," Nano Lett., Vol. 12, pp. 3501-3506, 2012. https://doi.org/10.1021/nl3010397
  19. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, et al., "Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths," Sci. Rep., Vol. 5, pp. 10941, 2015 https://doi.org/10.1038/srep10941
  20. C. M. Natarajan, M. G. Tanner and R. H. Hadfield, "Superconducting nanowire single-photon detectors: physics and applications," Supercond. Sci. Technol., Vol. 25, pp. 063001, 2012. https://doi.org/10.1088/0953-2048/25/6/063001
  21. J. A. O'Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, et al., "Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector," Appl. Phys. Lett., Vol. 98, pp. 201116, 2011. https://doi.org/10.1063/1.3581054
  22. P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, et al., "Superconducting single-photon detectors integrated with diamond nanophotonic circuits," Light Sci. Appl., Vol. 4, pp. e338, 2015. https://doi.org/10.1038/lsa.2015.111
  23. D. H. Youn, G. Bae, S. Han, J. Y. Kim, J.-W. Jang, et al., "A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT-graphene hybrid support," J. Mater. Chem. A, Vol. 1, pp. 8007-8015, 2013. https://doi.org/10.1039/c3ta11135k
  24. J.-G. Kim, H. Kang, Y. Lee, J. Park, J. Kim, et al., "Carbon-Nanotube-Templated, Sputter-Deposited, Flexible Superconducting NbN Nanowire Yarns," Adv. Funct. Mater., Vol. 27, pp. 1701108, 2017. https://doi.org/10.1002/adfm.201701108
  25. Z. Feng, J. Yuan, G. He, W. Hu, Z. Lin, et al., "Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition," Sci. Rep., Vol. 8, pp. 4039, 2018. https://doi.org/10.1038/s41598-018-22291-z
  26. R. Jha and V. Awana, "Control of sputtering parameters for deposition of NbN thick films," Novel Supercond. Mater., Vol. 1, pp. 7-12, 2015.