• Title/Summary/Keyword: Silicon Dioxide

Search Result 267, Processing Time 0.026 seconds

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF

A Study on the Deposition Condition of Acoustic Bragg Reflector Using RF/DC Magnetron Sputtering (RF/DC Magnetron Sputtering을 이용한 Acoustic Bragg Reflector 최적 증착조건에 관한 연구)

  • ;Mai Linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.143-147
    • /
    • 2002
  • In this paper, we investigated the deposition condition of Bragg reflector formation that will be expected to play an important role in future FBAR device applications. The thin films were deposited using an RF/DC magnetron sputtering technique. The material characteristics such as deposition rates, grain structures and surface roughnesses of the deposited silicon dioxide (SiO$_2$) and tungsten (W) films were investigated for various deposition conditions. As a result, it was found that the deposition condition could significantly affect the material characteristics of the deposited films and also the optimization of the deposition process is essentially important to obtain the desirable Brags reflector structure consisted of high-quality in films.

  • PDF

Electrical characteristic of stacked $SiO_2/ZrO_2$ for nonvolatile memory application as gate dielectric (비휘발성 메모리 적용을 위한 $SiO_2/ZrO_2$ 다층 유전막의 전기적 특성)

  • Park, Goon-Ho;Kim, Kwan-Su;Oh, Jun-Seok;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.134-135
    • /
    • 2008
  • Ultra-thin $SiO_2/ZrO_2$ dielectrics were deposited by atomic layer chemical vapor deposition (ALCVD) method for non-volatile memory application. Metal-oxide-semiconductor (MOS) capacitors were fabricated by stacking ultra-thin $SiO_2$ and $ZrO_2$ dielectrics. It is found that the tunneling current through the stacked dielectric at the high voltage is lager than that through the conventional silicon oxide barrier. On the other hand, the tunneling leakage current at low voltages is suppressed. Therefore, the use of ultra-thin $SiO_2/ZrO_2$ dielectrics as a tunneling barrier is promising for the future high integrated non-volatile memory.

  • PDF

Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement (주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작)

  • Jaung, Seung-Pil;Kim, Kyeong-Tae;Won, Jong-Bo;Kwon, Oh-Myoung;Park, Seung-Ho;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

Studies for Improvement in SiO2 Film Property for Thin Film Transistor (박막트랜지스터 응용을 위한 SiO2 박막 특성 연구)

  • Seo, Chang-Ki;Shim, Myung-Suk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2004
  • Silicon dioxide (SiO$_2$) is widely used as a gate dielectric material for thin film transistors (TFT) and semiconductor devices. In this paper, SiO$_2$ films were grown by APCVD(Atmospheric Pressure chemical vapor deposition) at the high temperature. Experimental investigations were carried out as a function of $O_2$ gas flow ratios from 0 to 200 1pm. This article presents the SiO$_2$ gate dielectric studies in terms of deposition rate, refrative index, FT-IR, C-V for the gate dielectric layer of thin film transistor applications. We also study defect passivation technique for improvement interface or surface properties in thin films. Our passivation technique is Forming Gas Annealing treatment. FGA acts passivation of interface and surface impurity or defects in SiO$_2$ film. We used RTP system for FGA and gained results that reduced surface fixed charge and trap density of midgap value.

Ferroelectric characteristics of PZT capacitors fabricated by using chemical mechanical polishing process with change of process parameters (화학적기계적연마 공정으로 제조한 PZT 캐패시터의 공정 조건에 따른 강유전 특성 연구)

  • Jun, Young-Kil;Jung, Pan-Gum;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.66-66
    • /
    • 2007
  • Lead zirconate titanate (PZT) is one of the most attractive perovskite-type materials for ferroelectric random access memory (FRAM) due to its higher remanant polarization and the ability to withstand higher coercive fields. We first applied the damascene process using chemical mechanical polishing (CMP) to fabricate the PZT thin film capacitor to solve the problems of plasma etching including low etching profile and ion charging. The $0.8{\times}0.8\;{\mu}m$ square patterns of silicon dioxide on Pt/Ti/$SiO_2$/Si substrate were coated by sol-gel method with the precursor solution of PZT. Damascene process by CMP was performed to pattern the PZT thin film with the vertical sidewall and no plasma damage. The polarization-voltage (P-V) characteristics of PZT capacitors and the current-voltage characteristics (I-V) were examined by change of process parameters. To examine the CMP induced damage to PZT capacitor, the domain structure of the polished PZT thin film was also investigated by piezoresponse force microscopy (PFM).

  • PDF

A Comparative Study on Silicon Dioxide Thin Films Prepared by Tetra-Ethoxysilane and Tetra-Iso-Propoxysilane

  • Im, Cheol-Hyeon;Lee, Seok-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.214.1-214.1
    • /
    • 2013
  • Tetra-ethoxysilane (TEOS)은 일반적으로 저온 게이트 산화막의 원료 널리 이용되고 있으나 as-deposited 상태에서는 필수적으로 생성된 높은 계면밀도와 고정전하를 제거하기 위하여 수소계면처리, forming gas annealing 등 후처리 공정을 필수적으로 거처야만 한다. 즉 후처리 공정 없이도 일정수준의 계면밀도와 고정전하를 갖을 수 있는 출발물질이 제안되면 산업적 의미를 갖을 것이다. 본 연구에서는 TEOS를 대체할 수 있는 후보재료로써 Tetra-iso-propoxysilane (T-iso-POS)을 제안하였다. T-iso-POS는 iso 구조의 3차원적 특수 구조를 가지므로 더 쉽게 분해 될 수 있어 탄소의 결합을 억제 할 수 있다고 사료된다. 용량 결합형 PECVD (13.56 MHz) 장비를 이용하여 RCA 세정을 실시 한 p-Si (100) 기판위에 TEOS 혹은 T-iso-POS (2 sccm)와 O2를 도입(50 sccm), 플라즈마 전원(20~100 W), 압력(0.1~0.5 torr), 온도 ($170{\sim}400^{\circ}C$), 전극 간 거리 (1~4.5cm)의 조건 하에서 증착하였다. 얻어진 각각의 SiO2 막에 대해, 성장 속도, 2% BHF 용액보다 에칭 속도, IV 특성과 C-V 특성, FT-IR에 의해 화학구조 평가를 실시했다. T-iso-POS원료로 사용하여 TEOS보다 낮은 약 $200^{\circ}C$에서 증착 된 산화막에서 후 처리 없이도 10 MV/cm 이상의 절연 파괴 특성을 나타내는 우수한 게이트 절연막 제작에 성공했다. 그 성장 속도도 약 20 nm/min로 높았다.

  • PDF

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential $3\omega$ Method (차등 $3\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin, Sang-Woo;Cho, Han-Na;Cho, Hyung-Hee
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential $3\omega$ method. Also, verification of differential $3\omega$ method has been accomplished with various proposed criteria. The target film for the measurement is 300 nm thick silicon dioxide which is covered with upper protective layer of various thicknesses. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. Since the verification of differential $3\omega$ method has not been conducted yet, we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential $3\omega$ method is verified to be reliable as long as the proposed preconditions of the samples are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between thickness of the upper protective layer and width of the heater line due to heat spreading effect.

  • PDF