• 제목/요약/키워드: Silicon Crystallization

검색결과 240건 처리시간 0.021초

Crystallization of Amorphous Silicon Films Using Joule Heating

  • Ro, Jae-Sang
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.20-24
    • /
    • 2014
  • Joule heat is generated by applying an electric filed to a conductive layer located beneath or above the amorphous silicon film, and is used to raise the temperature of the silicon film to crystallization temperature. An electric field was applied to an indium tin oxide (ITO) conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced within the range of a millisecond. To investigate the kinetics of Joule-heating induced crystallization (JIC) solid phase crystallization was conducted using amorphous silicon films deposited by plasma enhanced chemical vapor deposition and using tube furnace in nitrogen ambient. Microscopic and macroscopic uniformity of crystallinity of JIC poly-Si was measured to have better uniformity compared to that of poly-Si produced by other methods such as metal induced crystallization and Excimer laser crystallization.

Enhanced Crystallization of Amorphous Silicon using Electric Field

  • Song, Kyung-Sub;Jun, Seung-Ik;Park, Sang-Hyun;Park, Duck-Kyun
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.243-246
    • /
    • 1997
  • A new technique for low temperature crystallization of amorphous silicon, called field aided lateral crystallization(FALC) was attempted. To demonstrate the concept of FALC, thin layer of nickel(30${\AA}$) was deposited on top of amorphous silicon film and the electric field was applied during the crystallization. The effects of electric field on the crystallization behavior of amorphous silicon film were investigated.

  • PDF

특허맵과 AHP를 활용한 최적의 LCD 저온폴리실리콘 결정화 기술 선정 (Determining an Optimal Low Temperature Polycrystalline Silicon Crystallization Technology of LCD using Patent Map and AHP)

  • 김관열;이장희
    • 지식경영연구
    • /
    • 제12권1호
    • /
    • pp.39-52
    • /
    • 2011
  • Many LCD manufacturers continue to develop the technologies of LCD manufacturing processes for the reduction of production cost, power consumption and high-resolution. The LTPS (Low Temperature Polycrystalline Silicon) crystallization technology is important for rearranging the internal structure of liquid crystal grain by adding certain energy to amorphous silicon and turning it into poly-silicon in order to manufacture LCD with better performance. We consider 14 existing technologies of LTPS crystallization in the LCD manufacturing and present an intelligent analysis methodology using patent map and AHP (Analytic Hierarchy Process) analysis for determining an optimal LTPS crystallization technology. By using patent map analysis, we easily understand the development process and mega-trend of LTPS crystallization technologies and their relationship. By using AHP analysis, we evaluate 14 LTPS technologies. Through the use of proposed methodology, we determine the Continuous Wave Laser Lateral Crystallization technology as an optimal one.

  • PDF

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

AMOLED 디스플레이의 박막트랜지스터 제작을 위한 결정화 기술 동향 및 대형화 연구 (Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays)

  • 김경보;이종필;김무진;민영실
    • 융합정보논문지
    • /
    • 제9권5호
    • /
    • pp.117-124
    • /
    • 2019
  • 본 논문에서는 AMOLED 디스플레이 구동회로로 사용되는 박막트랜지스터의 구성요소 중에서 반도제 물질 제조의 최근 동향에 대해 논한다. 트랜지스터에 적용을 위해 특성이 좋은 반도체 막을 얻는 방법으로 비정질 실리콘을 다결정 실리콘으로 변화시켜야 하는데 레이저와 열처리 방법이 있으며, 레이저를 이용한 기술에는 SLS(Sequential Lateral Solidification), ELA(Excimer Laser Annealing), TDX(Thin-beam Directional Crystallization), 열처리 기술에는 SPC(Solid Phase Crystallization), SGS(Super Grain Silicon), MIC(Metal Induced Crystallization), FALC(Field Aided Lateral Crystallization)가 대표적이며, 이들에 대해 상세히 설명한다. 본 연구실에서 연구중인 레이저 결정화 기술의 대형 AMOLED 디스플레이 제작을 위한 연구 내용도 다룬다.

PECVD 방법으로 증착한 Si박막의 SPC 성장 (SPC Growth of Si Thin Films Preapared by PECVD)

  • 문대규;임호빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 춘계학술대회 논문집
    • /
    • pp.42-45
    • /
    • 1992
  • The poly silicon thin films were prepared by solid phase crystallization at 600$^{\circ}C$ of amorphous silicon films deposited on Corning 7059 glass and (100) silicon wafer with thermally grown SiO$_2$substrate by plasma enhanced chemical vapor deposition with varying rf power, deposition temperature, total flow rate. Crystallization time, microstructure, absorption coefficients were investigated by RAMAN, XRD analysis and UV transmittance measurement. Crystallization time of amorphous silicon films was increased with increasing rf power, decreasing deposition temperature and decreasing total flow rate.

  • PDF

The Substrate Effects on Kinetics and Mechanism of Solid-Phase Crystallization of Amorphous Silicon Thin Films

  • Song, Yoon-Ho;Kang, Seung-Youl;Cho, Kyoung-Ik;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • 제19권1호
    • /
    • pp.26-35
    • /
    • 1997
  • The substrate effects on solid-phase crystallization of amorphous silicon (a-Si) films deposited by low-pressure chemical vapor deposition (LPCVD) using $Si_2H_6$ gas have been extensively investigated. The a-Si films were prepared on various substrates, such as thermally oxidized Si wafer ($SiO_2$/Si), quartz and LPCVD-oxide, and annealed at 600$^{\circ}C$ in an $N_2$ ambient for crystallization. The crystallization behavior was found to be strongly dependent on the substrate even though all the silicon films were deposited in amorphous phase. It was first observed that crystallization in a-Si films deposited on the $SiO_2$/Si starts from the interface between the a-Si and the substrate, so called interface-interface-induced crystallization, while random nucleation process dominates on the other substrates. The different kinetics and mechanism of solid-phase crystallization is attributed to the structural disorderness of a-Si films, which is strongly affected by the surface roughness of the substrates.

  • PDF

표면 활성화 처리가 비정질 규소 박막의 결정화에 미치는 영향 (The effect of the surface activation treatment on the crystallization of amorphous silicon thin film)

  • 이의석;김영관
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.173-179
    • /
    • 1999
  • 본 연구에서는 비정질 규소 박막의 결정화를 촉진시키기 위하여 표면 활성화 처리의 영향을 관찰하였다. 표면 활성화 방법으로는 습식 연마법(Wet Blasting)과 Nd:YAG 레이저의 빔을 사용하였고, 700~$800^{\circ}C$에서 관상로 열처리를 행하여 고살 결정화에 미치는 영향을 보았다. 결정화 정도의 기준으로는 XRD 분석을 통해 얻은 (111) 피크강도를 이용하였으며, 결정의 품질을 분석하기 위해 Raman 분석을 행하였다. 결정화의 표면 형상에 대한 관찰은 주사전자 현미경(SEM)을 사용하였다. 본 실험 결과 표면 활성화 처리는 비정질 규소박막의 결정화를 촉진하고, 결정의 품질을 향상시키는 것으로 확인되었다. 습식 연마법(Wet Blasting)의 경루 2 Kgf/$\textrm{cm}^2$의 압력이 가장 효과적이었고, 레이저의 에너지는 100~200mJ/$\textrm{cm}^2$가 효과적이었다. 이것은 표면활성화처리를 통하여 비정질 실리콘 박막의 표면에 strain energy가 형성되어 결정화에 필요한 엔탈피에 영향을 미친 효과 때문으로 예상된다.

  • PDF

OLED 디스플레이 제작을 위한 Joule 유도 결정화 공정에서의 유리기판에 대한 열해석 (Thermal Analysis on Glass Backplane of OLED Displays During Joule Induced Crystallization Process)

  • 김동현;박승호;홍원의;정장균;노재상;이성혁
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.797-802
    • /
    • 2009
  • Large area crystallization of amorphous silicon thin-films on glass substrates is one of key technologies in manufacturing flat displays. Among various crystallization technologies, the Joule induced crystallization (JIC) is considered as the highly promising one in the OLED fabrication industries, since the amorphous silicon films on the glass can be crystallized within tens of microseconds, minimizing the thermally and structurally harmful influence on the glass. In the JIC process the metallic layers can be utilized to heat up the amorphous silicon thin films beyond the melting temperatures of silicon and can be fabricated as electrodes in OLED devices during the subsequent processes. This numerical study investigates the heating mechanisms during the JIC process and estimates the deformation of the glass substrate. Based on the thermal analysis, we can understand the temporal and spatial temperature fields of the backplane and its warping phenomena.

Joule-heating induced crystallization (JIC) of amorphous silicon films

  • Hong, Won-Eui;Lee, Joo-Yeol;Kim, Bo-Kyung;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.459-462
    • /
    • 2007
  • An electric field was applied to a conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced through a solid state transformation within the range of a millisecond. Uniformly distributed grains were obtained due to enormously high heating rate.

  • PDF