• Title/Summary/Keyword: Silicon Bridge

Search Result 63, Processing Time 0.024 seconds

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

Air-Bridge Interconnected Coplanar Waveguides Fabricated on Oxidized Porous Silicon(OPS) Substrate for MMIC Applications (산화된 다공질 실리콘 기판 위에 제작된 MMIC용 Air-Bridge Interconnected Coplanar Waveguides)

  • Sim, Jun-Hwan;Gwon, Jae-U;Park, Jeong-Yong;Lee, Dong-In;Kim, Jin-Yang;Lee, Hae-Yeong;Lee, Jong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, to improve the characteristics of a transmission line on silicon substrate, we fabricated air-bridge interconnected CPW transmission line on a 10-${\mu}{\textrm}{m}$-thick oxidized porous silicon(OPS) substrate using surface micromachining. Air-bridge interconnected CPW of S-W-S = 30-80-30 ${\mu}{\textrm}{m}$has insertion loss of -0.25 ㏈ and return loss of -28.9 ㏈ at 4㎓ And return loss of CPW with stepped compensated air-bridge(S-W-S : 30-100-30 ${\mu}{\textrm}{m}$) is improved -0.98㏈ at 4㎓. The results indicate that the thick OPS provides an approach to incorporate high performance, low cost microwave and millimeter wave circuits in a high-resistivity silicon-based process.

Theoretical study of flow and heat transfer around silicon bridge in a flow sensor (유속 센서의 실리콘 브리지 주위의 유동 및 열전달 수치해석에 관한 연구)

  • Hwang, Ho-Yeong;Kim, Ho-Yeong;Jeong, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1376-1384
    • /
    • 1996
  • Measuring the velocity of fluid flow, semiconductor flow sensors are widely used in the various fields of engineering and science such as the semiconductor manufacturing processes and electronic control engines for automobiles. In the near future, this type of sensors will replace present hot wire type sensors or other type flow sensor due to its low price, easy handling and small size. To develop the advanced semiconductor flow sensor, it is necessary to obtain characteristics of the flow and the heat transfer around the sensor in advance. In the present study, the theoretical analysis including mathematical modeling and numerical calculation to predict the characteristics of heat transfer and flow field around the sensor was carried out. The main parameters for optimum design of the flow sensor are the free stream velocity, the heat generation rate of silicon arm and the distance between arms. Effects of these parameters on flow and heat transfer around the sensor and the temperature difference between arms are examined.

Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device

  • Kim, Sungjun;Cho, Seongjae;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations having $Ag/Si_3N_4/TiN$ and $Ag/Si_3N_4/p^+$ Si are studied for metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) structures, respectively. Switching voltages including forming/set/reset are lower for MIM than for MIS structure. It is found that the workfunction different affects the performances.

Development of PWM Converter System for Sapphire Silicon Ingot Glowing of 80kW 10kA (사파이어 실리콘 결정 성장용 80kW 10kA PWM 컨버터 시스템 개발)

  • Kim, Min-Huei;Park, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.33-41
    • /
    • 2014
  • This paper is research result for a development of sapphire silicon ingot glowing(SSIG) PWM converter system for 80kW 10kA. The system include 3-phase AC-DC diode rectifier of input voltage AC 380V and 60Hz, DC-AC single phase full bridge PWM inverter of high frequency, AC-DC single-phase full wave rectifier using center-tapped of transformer for low voltage 8.0V and large current 10,000A of output specification, tungsten resistor load 0.1[$m{\Omega}$]. PWM switching frequency for IGBT inverter control set 30kHz. The suggested researching contents are designed data sheets of power converter system, PSIM simulation, operating characteristics and analysis results of developed SSIG system. This paper propose

A Study on Temperature Compensation of Silicon Piezoresistive Pressure Sensor (실리콘 저항형 압력센서의 온도 보상에 관한 연구)

  • 최시영;박상준;김우정;정광화;김국진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.563-570
    • /
    • 1990
  • A silicon pressure sensor made of a full bridge of diffused resistors was designed and fabricated using semiconductor integrated circuit process. Thin diaphragms with 30\ulcorner thickness were obtained using anisotropic wet chemical etching technique. Our device showed strong temperature dependence. Compensation networks are used to compensate for the temperature dependence of the pressure sensor. The bridge supply voltage having positive temperature coefficient by compensation networks was utilized against the negative temperature coefficient of bridge output voltage. The sensitivity fluctuation of pressure sensor before temperature compensation was -1700 ppm/\ulcorner, while it reduced to -710ppm\ulcorner with temperature compensation. Our result shows that the we could develop accurate and reliable pressure sensor over a wide temperature range(-20\ulcorner~50\ulcorner).

  • PDF

Fabrication of Thick Silicon Dioxide Air-Bridge and Coplanar Waveguide for RF Application Using Complex Oxidation Process and MEMS Technology (복합 산화법과 MEMS 기술을 이용한 RF용 두꺼운 산화막 에어 브리지 및 공면 전송선의 제조)

  • Kim, Kook-Jin;Park, Jeong-Yong;Lee, Dong-In;Lee, Bong-Hee;Bae, Yong-Hok;Lee, Jong-Hyun;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • This paper proposes a $10\;{\mu}m$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and micromachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation ($500^{\circ}C$, 1 hr at $H_2O/O_2$) and rapid thermal oxidation (RTO) process ($1050^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to $10\;{\mu}m$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 2dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about -20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

Evaluation for the Strength and Erosion Rate on the Silicon Nitride Ceramics (질화규소 세라믹스의 강도와 침식도 평가에 관한 연구)

  • 김부안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.783-789
    • /
    • 2003
  • An experimental method to investigate the fracture strength and fracture toughness for the silicon nitrides sintered at various sintering temperature is established. The erosion rate for these materials in the various concentration of NaOH solution is also investigated. In result, the fracture strength of Si3N4 is decreased with the increase of sintering temperature. On the other hand, the fracture toughness KIC is increased with the increase of sintering temperature. The erosion rate of silicon nitride in the NaOH solution depend largely on the grain size and the concentration of NaOH solution. The erosion rate of silicon nitride sintered at $1800^{\circ}C$ was much higher than that at $1950^{\circ}C$. These results are due to the unique columnar structure of silicon nitride.