Browse > Article
http://dx.doi.org/10.5573/JSTS.2016.16.2.147

Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device  

Kim, Sungjun (Department of Electrical and Computer Engineering and the Interuniversity Semiconductor Research Center (ISRC), Seoul National University)
Cho, Seongjae (Department of Electronic Engineering, Gachon University)
Park, Byung-Gook (Department of Electrical and Computer Engineering and the Interuniversity Semiconductor Research Center (ISRC), Seoul National University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.16, no.2, 2016 , pp. 147-152 More about this Journal
Abstract
In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations having $Ag/Si_3N_4/TiN$ and $Ag/Si_3N_4/p^+$ Si are studied for metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) structures, respectively. Switching voltages including forming/set/reset are lower for MIM than for MIS structure. It is found that the workfunction different affects the performances.
Keywords
Electrochemical metallization memory; conductive-bridge random-access memory; silicon nitride; metal-insulator-metal; metal-insulator-silicon;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater., vol. 6, no. 11, pp. 833-840, Nov. 2011.   DOI
2 H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, "Gd-doping effect on performance of $HfO_2$ based resistive switching memory devices using implantation approach," Appl. Phys. Lett., vol. 98, no. 4, pp. 042105-1-042105-3, Jan. 2011.   DOI
3 H.-D. Kim, M. J. Yun, and S. Kim, "All ITO-Based Trasparent Resistive Switching Random Access Memory Using Oxygen Doping Method," J. Alloy. Compd., vol. 653, pp. 534-538, Dec. 2015.   DOI
4 H.-D. Kim, M. J. Yun, and T. G. Kim, "Formingfree bipolar resistive switching in nonstoichiometric ceria films," Phys. Status Solidi. R., vol. 9, no. 4, pp. 264-268, Mar. 2015.   DOI
5 S. Kim, S. Jung, and B.-G. Park, "Investigation of bipolar resistive switching characteristics in $Si_3N_4$-based RRAM with metal-insulator-silicon structure," Int. J. Nanotechnol., vol. 11, no. 1-4, pp. 126-134, Mar. 2014.   DOI
6 S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of $Si_3N_4$-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications," Appl. Phys. Lett., vol. 106, no. 21, pp. 212106-1-212106-4, May. 2015.   DOI
7 S. Kim, S. Cho, K.-C. Ryoo, and B.-G. Park, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 6, pp. 062201-1-052204-6, Nov. 2015.   DOI
8 K. Kim, K. Lee, K.-H. Lee, Y.-K. Park, and W. Y. Choi, "A Finite Element Model for Bipolar Resistive Random Access Memory," J. Semicod. Tech. Sci., vol. 14, no. 3, pp. 268-271, Jun. 2014.   DOI
9 S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals," IEICE Trans. Electron., vol. E98-C, No. 5, pp. 429-432, May. 2015.   DOI
10 S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Gradual bipolar resistive switching in Ni/$Si_3N_4/n^+-Si$ resistive-switching memory device for high-density integration and low-power applications," Solid-State Electron., vol. 114, pp. 94-97, Dec. 2015.   DOI
11 H.-D. Kim, M. Yun, and S. Kim, "Self-rectifying resistive switching behavior observed in $Si_3N_4$-based resistive random access memory devices," J. Alloy. Compd., vol. 651, pp. 340-343, Dec. 2015.   DOI
12 D. Walczyk, Ch. Walczyka, T. Schroedera, T. Bertauda, M. Sowińskaa, M. Lukosiusa, M. Fraschkea, B. Tillacka, and Ch. Wengera, "Resistive switching characteristics of CMOS embedded $HfO_2$-based 1T1R cells," Microelectron Eng., vol. 88, no. 7, pp. 1133-1135, Jul. 2011.   DOI
13 R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan and H. Hwang, "Reproducible hysteresis and resistive switching in metal-$Cu_xO$-metal heterostructures," Appl. Phys. Lett., vol. 90, no. 4, pp. 042107-1-042107-3, Jan. 2007.   DOI
14 H.-D. Kim, F. Crupi, M. Lukosius, A. Trusch, C. Walczyk, and C. Wenger, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 5, pp. 052204-1-052204-5, Aug. 2015.   DOI
15 Y. Kim, J. Y. Seo, S.-H Lee, and B.-G. Park, "A new programming method to alleviate the program speed variation in three-dimensional stacked array NAND flash memory," J. Semicod. Tech. Sci., vol. 14, no. 5, pp. 566-571, Oct. 2014.   DOI
16 W. Kwon, I. J. Park, and C. Shin, "Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage," J. Semicond. Technol. Sci., vol. 15, no. 2, pp. 286-291, Apr. 2015.   DOI
17 Q. Liu. W. Guan, S. Long, R Jia, and M. Liu, "Resistive switching memory effect of $ZrO_2$ films with $Zr^+$ implanted," Appl. Phys. Lett., vol. 92, no. 1, pp. 012117-1-012117-3, May. 2008.   DOI
18 S. Yu and, H.-S. P. Wong "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)," IEEE Trans. Electron. Dev., vol. 58, no. 5, pp.1352-1360, May. 2011.   DOI
19 S.-J. Choi, J.-H. Lee, H.-J. Bae, W.-Y. Yang, T.-W. Kim, and K.-H. Kim, "Improvement of CBRAM Resistance Window by Scaling Down Electrode Size in Pure-GeTe Film," IEEE Electron. Dev. Lett., vol. 30, no. 2, pp. 120-122, Feb. 2009.   DOI
20 A. Pradel, N. Frolet, M. Ramonda, A. Piarristeguy, and M. Ribes "Bipolar resistance switching in chalcogenide materials," Phys. Status Solidi. R., vol. 208, no. 10, pp. 2303-2308, Oct. 2011.   DOI
21 J. Molina, R. Valderrama, C. Zuniga, P. Rosales, W. Calleja, A. Torres, J. D. Hidalga, and E. Gutierrez, "Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of $Al/Al_2O_3/Al$ and $Al/Al_2O_3/W$ structures fabricated on glass at $300^{\circ}C$," Microelectron. Reliab., vol. 54, no. 12, pp. 2747-2753, Dec. 2014.   DOI
22 Y. C. Yang, F. Pan, F. Zeng, and M. Liu, "Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization," J. Appl. Phys., vol. 106, no. 12, pp. 123705-1-123705-7, Dec. 2009.   DOI
23 J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. S. Roh, S.-J. Hong, I. H. Cho, H.-I. Kwon, C. H. Park, B.-G. Park, and J.-H. Lee, "Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices," Appl. Phys. Lett., vol. 101, no. 10, pp. 103506-1-103506-3, Sep. 2012.   DOI