• Title/Summary/Keyword: Silica removal

Search Result 208, Processing Time 0.03 seconds

A study on the evaluation of phosphate removal efficiency using Fe-coated silica sand (철 코팅 규사의 인산이온 제거 효율 평가 연구)

  • Jo, Eunyoung;Kim, Younghee;Park, Changyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.521-527
    • /
    • 2017
  • Phosphorus is one of the limiting nutrients for the growth of phytoplankton and algae and is therefore one of leading causes of eutrophication. Most phosphorous in water is present in the form of phosphates. Different technologies have been applied for phosphate removal from wastewater, such as physical, chemical precipitation by using ferric, calcium or aluminum salts, biological, and adsorption. Adsorption is one of efficient method to remove phosphates in wastewater. To find the optimal media for phosphate removal, physical characteristics of media was analysed, and the phosphate removal efficiency of media (silica sand, slag, zeolite, activated carbon) was also investigated in this study. Silica sand showed highest relative density and wear rate, and phosphate removal efficiency. Silica sand removed about 36% of phosphate. To improve the phosphate removal efficiency of silica sand, Fe coating was conducted. Fe coated silica sand showed 3 times higher removal efficiency than non-coated one.

Surface Modification of Silica Spheres for Copper Removal

  • Kim, Byoung-Ju;Park, Eun-Hye;Kang, Kwang-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.317-320
    • /
    • 2016
  • Efficient copper removal from water was achieved by using surface modified silica spheres with 3-mercaptopropyltrimethoxysilane (MPTMS) using base catalyst. The surface modification of silica spheres was performed by hydrolysis and condensation reactions of the MPTMS. The characteristic infrared absorption peaks at 2929, 1454, and 1343 cm−1 represent the −CH2 stretching vibration, asymmetric deformation, and deformation, respectively. The absorption peaks at 2580 and 693 cm−1 corresponding the −SH stretching vibration and the C-S stretching vibration indicate the incorporation of MPTMS to the surface of silica spheres. Field emission scanning electron microscope (FESEM) image of the surface modified silica sphere (SMSS) shows nano-particles of MPTMS on the surface of silica spheres. High concentration of copper solution (1000 ppm) was used to test the copper removal efficiency and uptake capacity. The FESEM image of SMSS treated with the copper solution shows large number of copper lumps on the surface of SMSS. The copper concentration drastically decreased with increasing the amount of SMSS. The residual copper concentrations were analyzed using inductively coupled plasma mass spectrometer. The copper removal efficiency and uptake capacity with 1000 ppm of copper solution were 99.99 % and 125 mg/g, respectively.

Effect of Particle Size of Ceria Coated Silica and Polishing Pressure on Chemical Mechanical Polishing of Oxide Film

  • Kim, Hwan-Chul;Lim, Hyung-Mi;Kim, Dae-Sung;Lee, Seung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2006
  • Submicron colloidal silica coated with ceria were prepared by mixing of silica and nano ceria particles and modified by hydrothermal reaction. The polishing efficiency of the ceria coated silica slurry was tested over oxide film on silicon wafer. By changing the polishing pressure in the range of $140{\sim}420g/cm^2$ with the ceria coated silica slurries in $100{\sim}300nm$, rates, WIWNU and friction force were measured. The removal rate was in the order of 200, 100, and 300 nm size silica coated with ceria. It was known that the smaller particle size gives the higher removal rate with higher contact area in Cu slurry. In the case of oxide film, the indentation volume as well as contact area gives effect on the removal rate depending on the size of abrasives. The indentation volume increase with the size of abrasive particles, which results to higher removal rate. The highest removal rate in 200 nm silica core coated with ceria is discussed as proper combination of indentation and contact area effect.

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF

Phosphate removal in water by mesostructure based on titanium and silica (티타늄과 실리콘 기반의 메조구조체를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.725-730
    • /
    • 2011
  • In this study, it was investigated that the feasibility of utilizing inorganic mesostructures for removal of phosphate in water. The comparison of the efficiency for phosphate adsorption between inorganic mesostructures was conducted. X-ray diffraction(XRD) and Brunauer-Emmett-Teller(BET) methods were used to characterize these mesostructures. The efficiencies of silica and titanium mesostructures for the removal of phosphate from aqueous solution were investigated. Equilibrium data were analyzed using the Langmuir isotherm. The maximum adsorption capacities of mesostructure adsorbents were found to be 49.3 and 19.5 mg $g^{-1}$ for the titanium and silica mesostructures, respectively. The adsorption kinetics was described by a pseudo third-order kinetic model. The results from this study indicated that the titanium mesostructure has the potential to be utilized for the cost-effective removal of phosphate from wastewater.

The Removal of Heavy Metals and Anion in Mining Wastewater by Silica Matrix Coagulation (Silica계 응집제를 이용한 광산폐수의 중금속 및 음이온 제거)

  • 이해승;이영신;현근우
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.80-86
    • /
    • 2001
  • This research was carried out to investigate the effect of microscopic silica matrix coagulation on heavy metals and anion removal in mining wastewater. pH and alkalinity played an important role to coagulate heavy metals such as Al, and Fe and an anion such as ${SO_4}^{2-}$ with silica matrix as well as NaOH. However, the efficiency to form coagulates was much greater in silica matrix-treated wastewater than NaOH-treated one. Fe in wastewater formed coagulation with both silica matrix and NaOH treatments resulting in lowering Fe content in wastewater at above pH 9. For Al removal in wastewater, silica matrix-treated wastewater at above pH 12.3 formed stable coagulate with Al, while NaOH-treated one did not. Alkalinities of 89 and 220 mg/L were required to stabilize silica matrix treated coagulate with Fe and Al, respectively. Reaction time of ten minute was required to provide enough reaction for coagulation between heavy metals and silica matrix. Heavy metals and anion leachates were much lower in coagulate with silica matrix than that with NaOH, which indicates that silica matrix could be used to remove heavy metals efficiently.

  • PDF

Removal of Silica and Humic Acid from Brackish Water with Calcite (Calcite를 이용한 brackish water 내의 실리카와 휴믹산의 제거에 관한 연구)

  • 박소희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.243-245
    • /
    • 2002
  • Brackish water desalination using reverse osmosis(RO) membrane is more useful and economic than sea water to solve the shortage of fresh water supply because of its low total dissolved solid(TDS) contents. Silica and humic acid in brackish water make serious fouling problems and cause the decline of permeate flux and increase of operating pressure. In this study, the experiments for removal of silica and humic acid were conducted with calcite particles to prevent membrane fouling and investigated the effect of pH of feed water Adsorption of silica to calcite was higher at pH=7.5 than 9.5 and removal rate was increased according to increase of initial concentration of silica. The effect of pH on adsorption of humic acid was not significant but at low initial concentration the adsorption of humic acid was enhanced at pH 7.5. The result of this study expect to apply to brackish water desalination experiment of flat-sheet reverse osmosis membrane.

  • PDF

Development of hybrid resin to reduce silica in borated water

  • Ramzan Akhtar ;Shahid Latif ;Syed Aizaz Ali Shah ;Shaukat Saeed ;Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2547-2555
    • /
    • 2023
  • Amberlite IRN-78 resin was incorporated with iron to make a hybrid resin for the removal of silica from the borated water of nuclear power plants. The hybrid resin contained 0.84 wt % iron compounds upon pyrolysis. In batch experiments carried out at room temperature, 1 g of the hybrid resin removed ~60 ㎍ silica from 1 ppm borated water in ~120 min. The efficiency of the hybrid material increased with the resin quantity, decreased with silica concentration, and remained unchanged at different pH values. Freundlich and Temkin isothermal adsorption dominated the silica removal process and followed the pseudo-first-order and intra-particle diffusion mechanism simultaneously. The concentration of the leached iron remained appreciably under the safe limits of 200 ㎍/l during the experiments. This detailed study suggests the use of hybrid resin for the removal of silica from borated water streams and other similar systems.

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.

Effect of pH level and slurry particle size on the chemical mechanical planarization of langasite crystal wafer (pH level 및 slurry 입도가 langasite wafer의 chemical mechanical planarization에 미치는 영향)

  • Cho Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Effects of pH level and slurry particle size on material removal rate and planarization of langasite single crystal wafer have been examined. Higher material removal rate was obtained with lower pH level slurries while the planarization was found to be determined by average particle size of colloidal silica slurries. Slurries containing 0.045 ㎛ amorphous silica particles showed the best polishing effect without any scratches on the surface. Effective particle number has a strong effect on the surface planarization and the removal rate, so that the lower effective particle numbers produced low removal rate but the better planarization results.