DOI QR코드

DOI QR Code

Development of hybrid resin to reduce silica in borated water

  • Ramzan Akhtar (Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS)) ;
  • Shahid Latif (Chashma Nuclear Power Complex) ;
  • Syed Aizaz Ali Shah (Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS)) ;
  • Shaukat Saeed (Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS)) ;
  • Abdul Aziz (Chashma Nuclear Power Complex)
  • Received : 2022.12.04
  • Accepted : 2023.04.06
  • Published : 2023.07.25

Abstract

Amberlite IRN-78 resin was incorporated with iron to make a hybrid resin for the removal of silica from the borated water of nuclear power plants. The hybrid resin contained 0.84 wt % iron compounds upon pyrolysis. In batch experiments carried out at room temperature, 1 g of the hybrid resin removed ~60 ㎍ silica from 1 ppm borated water in ~120 min. The efficiency of the hybrid material increased with the resin quantity, decreased with silica concentration, and remained unchanged at different pH values. Freundlich and Temkin isothermal adsorption dominated the silica removal process and followed the pseudo-first-order and intra-particle diffusion mechanism simultaneously. The concentration of the leached iron remained appreciably under the safe limits of 200 ㎍/l during the experiments. This detailed study suggests the use of hybrid resin for the removal of silica from borated water streams and other similar systems.

Keywords

Acknowledgement

The authors are thankful to Chashma Nuclear Power Complex Unit-2 for providing funding to carry out this study and to Mr. Naveed Shahzad, for providing support during research work.

References

  1. S. Uchida, H. Takiguchi, D.H. Lister, Instrumentation for monitoring and control of water chemistry for light-water-cooled nuclear power plants, Power Plant Chem. 12 (5) (2010) 278-295. 
  2. S. Uchida, Latest experience with water chemistry in nuclear power plants in Japan, Power Plant Chem. 8 (5) (2006) 282-292 [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:37075701. 
  3. Y.H. Cheon, N.Y. Lee, H. Park, C. Park, E.K. Kim, Primary Coolant pH Control for Soluble Boron-Free PWRs, 2015. 
  4. C.H. Liang, Separation properties of high temperature reverse osmosis membranes for silica removal and boric acid recovery, J. Membr. Sci. 246 (2) (Jan. 2005) 127-135, https://doi.org/10.1016/j.memsci.2004.07.006. 
  5. C.-H. Liang, K.-H. Su, A cleanup machine using reverse osmosis method to remove silica from boric acid tank at maanshan nuclear power station, Nucl. Technol. 162 (3) (Jun. 2008) 333-341, https://doi.org/10.13182/NT08-A3960. 
  6. F. Gressier, D. Mascarenhas, S. Taunier, M. Le-Calvar, J.-L. Bretelle, G. Ranchoux, EDF PWRs primary coolant purification strategies, in: NPC 2012: Nuclear Plant Chemistry Conference, International Conference on Water Chemistry of Nuclear Reactor Systems, 2012 [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:46071790. 
  7. M. Ben Sik Ali, B. Hamrouni, S. Bouguecha, M. Dhahbi, Silica removal using ion-exchange resins, Desalination 167 (Aug. 2004) 273-279, https://doi.org/10.1016/j.desal.2004.06.136. 
  8. W. Bouguerra, M. Ben Sik Ali, B. Hamrouni, M. Dhahbi, Equilibrium and kinetic studies of adsorption of silica onto activated alumina, Desalination 206 (1-3) (Feb. 2007) 141-146, https://doi.org/10.1016/j.desal.2006.02.063. 
  9. H. Baxter, Using resin to reduce silica in borated fluid - 20072, in: WM2020: 46 Annual Waste Management Conference, 2020 [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:52070709. 
  10. S. Sarkar, E. Guibal, F. Quignard, A.K. SenGupta, Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications, J. Nanoparticle Res. 14 (2) (2012) 1-24. 
  11. S. Tandorn, O. Arqueropanyo, W. Naksata, P. Sooksamiti, Preparation of Anion Exchange Resin Loaded with Ferric Oxide for Arsenic (V) Removal from Aqueous Solution, vol. 8, 2017, pp. 10-14, https://doi.org/10.18178/ijesd.2017.8.6.985, no. 6. 
  12. A. Hrdina, E. Lai, C. Li, B. Sadi, G. Kramer, A comparative study of magnetic transferability of superparamagnetic nanoparticles, J. Magn. Magn Mater. 322 (17) (2010) 2622-2627, Sep, https://doi.org/10.1016/j.jmmm.2010.03.031. 
  13. Q. Zhang, et al., Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal, Sci. China, Ser. B: Chem. 51 (4) (2008) 379-385.  https://doi.org/10.1007/s11426-007-0117-6
  14. A.A. Elabd, W.I. Zidan, M.M. Abo-Aly, E. Bakier, M.S. Attia, Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR120, J. Environ. Radioact. 134 (2014) 99-108, https://doi.org/10.1016/j.jenvrad.2014.02.008. 
  15. G. Crini, H.N. Peindy, F. Gimbert, C. Robert, Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies, Sep. Purif. Technol. 53 (1) (2007) 97-110.  https://doi.org/10.1016/j.seppur.2006.06.018
  16. N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste, Chem. Eng. J. 147 (2-3) (2009) 87-96.  https://doi.org/10.1016/j.cej.2008.06.024
  17. S. Xu, et al., Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent, J. Clean. Prod. 396 (Apr. 2023), 136479, https://doi.org/10.1016/j.jclepro.2023.136479.