Browse > Article
http://dx.doi.org/10.5012/jkcs.2016.60.5.317

Surface Modification of Silica Spheres for Copper Removal  

Kim, Byoung-Ju (Department of New and Renewable Energy)
Park, Eun-Hye (Dasomddeul)
Kang, Kwang-Sun (Department of New and Renewable Energy)
Publication Information
Abstract
Efficient copper removal from water was achieved by using surface modified silica spheres with 3-mercaptopropyltrimethoxysilane (MPTMS) using base catalyst. The surface modification of silica spheres was performed by hydrolysis and condensation reactions of the MPTMS. The characteristic infrared absorption peaks at 2929, 1454, and 1343 cm−1 represent the −CH2 stretching vibration, asymmetric deformation, and deformation, respectively. The absorption peaks at 2580 and 693 cm−1 corresponding the −SH stretching vibration and the C-S stretching vibration indicate the incorporation of MPTMS to the surface of silica spheres. Field emission scanning electron microscope (FESEM) image of the surface modified silica sphere (SMSS) shows nano-particles of MPTMS on the surface of silica spheres. High concentration of copper solution (1000 ppm) was used to test the copper removal efficiency and uptake capacity. The FESEM image of SMSS treated with the copper solution shows large number of copper lumps on the surface of SMSS. The copper concentration drastically decreased with increasing the amount of SMSS. The residual copper concentrations were analyzed using inductively coupled plasma mass spectrometer. The copper removal efficiency and uptake capacity with 1000 ppm of copper solution were 99.99 % and 125 mg/g, respectively.
Keywords
Silica spheres; Copper removal; Removal efficiency; Uptake capacity; MPTMS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bilal, M.; Shah, J. A.; Ashfaq, T.; Gardazi, S. M. H.; Tahir, A. A.; Pervez, A.; Haroon, H.; Mahmood, Q. J. Hazard. Mater. 2013, 263, 322.   DOI
2 Kokes, H.; Morcali, M. H.; Acma, E. Eng. Sci. Tech. 2014, 17, 39.
3 Ntimbani, R. N.; Simate, G. S.; Ndlovu, S. J. Environ. Chem. Eng. 2015, 3, 1258.   DOI
4 Su, Y. N.; Lin, W. S.; Hou, C. H.; Den, W. J. Water Process Eng. 2014, 4, 149.   DOI
5 Roy, S.; Datta, A.; Rehani, S. Inter. J. Mineral Processing 2015, 143, 43.   DOI
6 Ferraro, I.; Hullebusch, E. D.; Huguenot, D.; Fabbricino, M.; Esposito, G. J. Environ. Management 2015, 163, 62.   DOI
7 Rabiet, M.; Letouzet, M.; Hassanzadeh, S.; Simon, S. Chemosphere 2014, 95, 639.   DOI
8 Yang, Z.; Jia, S.; Zhuo, N.; Yang, W.; Wang, Y. Chemosphere 2015, 141, 112.   DOI
9 Doh, J. H.; Kim, J. H.; Kim, H. J.; Ali, R. F.; Shin, K.; Hong, Y. J. Chem. Eng. J. 2015, 277, 352.   DOI
10 Lee, C. K.; Low, K. S. Environ. Technol. 1989, 10, 395.   DOI
11 Sljivic, M.; Smiciklas, I.; Plecas, I.; Pejanovic, S. Environ. Technol. 2011, 32, 933.   DOI
12 Lu, S.; Gibb, S. W. Biores. Technol. 2008, 99, 1509.   DOI
13 Price, M. S.; Classen, J. J.; Payne, G. A. Biores. Technol. 2001, 77, 41.   DOI
14 Neto, V. O. S.; Oliveira, A. G.; Teixeira, R. N. P.; Silva, M. A. A.; Feire, P. T. C.; Keukeleire, D. D.; Nascimento, R. F. BioResources 2011, 6, 3376.
15 Shawabkeh, R.; Al-Harahsheh, A.; Al-Otoom, A. Sep. Purif. Technol. 2004, 40, 251.   DOI
16 Basci, N.; Kocadagistan, E.; Kocadagistan, B. Desalination 2004, 164, 135.   DOI
17 Sun, B.; Mi, Z. T.; An, G.; Zou, J. J. Industrial Eng. Chem. Res. 2009, 48, 9823.   DOI
18 Chang, Q.; Zhang, M.; Wang, J. J. Hazard. Mater. 2009, 169, 621.   DOI
19 Dundar, M.; Nuhoglu, C.; Nuhoglu, Y. J. Hazard. Mater. 2008, 151, 86.   DOI