• Title/Summary/Keyword: SiC nanoparticles

Search Result 84, Processing Time 0.026 seconds

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

Electrical and Magnetic Properties of Tunneling Device with FePt Magnetic Quantum Dots (FePt 자기 양자점 터널링 소자의 전기적 특성과 자기적 특성 연구)

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • We have studied the electrical and magnetic transport properties of tunneling device with FePt magnetic quantum dots. The FePt nanoparticles with a diameter of 8~15 nm were embedded in a $SiO_2$ layer through thermal annealing process at temperature of $800^{\circ}C$ in $N_2$ gas ambient. The electrical properties of the tunneling device were characterized by current-voltage (I-V) measurements under the perpendicular magnetic fields at various temperatures. The nonlinear I-V curves appeared at 20 K, and then it was explained as a conductance blockade by the electron hopping model and tunneling effect through the quantum dots. It was measured also that the negative magneto-resistance ratio increased about 26.2% as increasing external magnetic field up to 9,000 G without regard for an applied electric voltage.

Correlation between Charged Silicon Nanoparticles in the Gas Phase and the Low Temperature Deposition of Crystalline Silicon Films during Hot Wire Chemical Vapor Deposition

  • Yu, Seung-Wan;Hong, Ju-Seop;Kim, Jeong-Hyeong;Yu, Sin-Jae;Hwang, Nong-Mun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.283.2-283.2
    • /
    • 2014
  • 열필라멘트 화학증착공정(Hot Wire Chemical Vapor Deposition)에서 기상 에서 생성되는 하전된 실리콘 나노입자와 저온결정성 실리콘박막 증착의 연관성을 압력의 변화에 따른 상호비교를 통해 조사하였다. 필라멘트 온도는 $1800^{\circ}C$로 고정시키고 0.3~2 torr의 범위에서 공정 압력을 변화시키면서 증착하였다. 압력이 증가함에 따라 증착된 실리콘 박막의 결정화도는 증가하였으며, 증착속도는 감소하였다. 반응기 압력에 따른 기상에서 생성되는 나노입자의 크기분포의 변화를 조사하기 위하여 탄소막이 코팅된 투과전자현미경(Transmission Electron Microscopy) 그리드 위에 실리콘 나노입자를 포획하고 관찰하였다. 포획된 실리콘 나노입자의 크기분포와 개수농도는 압력이 증가함에 따라 감소하였다. 투과전자현미경을 이용하여 분석한 결과, 나노입자는 결정성 구조를 보였다. 압력이 증가함에 따라 나노입자의 크기가 감소하고 개수농도가 감소하는 것은 증착속도의 감소와 관련됨을 알 수 있다. 한편, 공정압력 증가에 따른 나노입자의 크기분포 및 개수농도 감소와 증착속도의 감소는 일반적으로 알려진 기상에서 석출하는 고상의 평형석출량(equilibrium amount of precipitation)이 압력의 증가함에 따라 증가한다는 사실과 일치하지 않는다. 이러한 압력경향성은 Si-H 시스템이 0.3~2 torr의 압력 영역에서 retrograde solubility를 갖는 것을 의미한다. 나노입자의 하전여부, 크기분포 및 개수농도를 측정하기 위하여 입자빔질량분석장비(Particle Beam Mass Spectroscopy)를 이용하였다. 그 결과, 실리콘 나노입자는 양 또는 음의 극성을 가진 하전된 상태임을 확인하였고, 투과전자현미경(TEM) grid에 포획한 실리콘 나노입자의 크기와 경향성이 일치하였다. 이는 나노입자가 저온의 기판에서 핵생성되어 성장하여 생성된 것이 아니라 열필라멘트 주위의 고온영역에서 생성된 것을 의미한다.

  • PDF

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

VLS growth of ZrO2 nanowhiskers using CVD method

  • Baek, Min-Gi;Park, Si-Jeong;Jeong, Jin-Hwan;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.149-149
    • /
    • 2016
  • Ceramic is widely known material due to its outstanding mechanical property. Besides, Zirconia(ZrO2) has a low thermal conductivity so it is advantage in a heat insulation. Because of these superior properties, ZrO2 is attracted to many fields using ultra high temperature for example vehicle engines, aerospace industry, turbine, nuclear system and so on. However brittle fracture is a disadvantage of the ZrO2. In order to overcome this problem, we can make the ceramic materials to the forms of ceramic nanoparticles, ceramic nanowhiskers and these forms can be used to an agent of composite materials. In this work, we selected Au catalyzed Vapor-Liquid-Solid mechanism to synthesize ZrO2 nanowhiskers. The ZrO2 whiskers are grown through Hot-wall Chemical Vapor Deposition(Hot wall CVD) using ZrCl4 as a powder source and Au film as a catalyst. This Hot wall CVD method is known to comparatively cost effective. The synthesis condition is a temperature of $1100^{\circ}C$, a pressure of 760torr(1atm) and carrier gas(Ar) flow of 500sccm. To observe the morphology of ZrO2 scanning electron microscopy is used and to identify the crystal structure x-ray diffraction is used.

  • PDF

Electrical and Thermo-mechanical Properties of DGEBA Cycloaliphatic Diamine Nano PA and SiO2 Composites

  • Trnka, Pavel;Mentlik, Vaclav;Harvanek, Lukas;Hornak, Jaroslav;Matejka, Libor
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2425-2433
    • /
    • 2018
  • This study investigates a new organic based material and its dielectric and mechanical properties. It is a comprehensive nanocomposite comprising a combination of various types of nanofillers with hydrophobic silica nanoparticles (AEROSIL R 974) as a matrix modifier and a polyamide nano nonwoven textile, Ultramid-Polyamide 6, pulped in the electrostatic field as a dielectric barrier. The polymer matrix is an epoxy network based on diglycidyl ether of bisphenol A (DGEBA) and cycloaliphatic diamine (Laromine C260). The designed nanocomposite material is an alternative to the conventional three-component composites containing fiberglass and mica with properties that exceed current electroinsulating systems (volume resistivity on the order of $10^{16}{\Omega}{\cdot}m$, dissipation factor tan ${\delta}=4.7{\cdot}10^{-3}$, dielectric strength 39 kV/mm).

Preparation and Properties of Poly(organosiloxane) Rubber Nanocomposite Containing Ultrafine Nickel Ferrite Powder (Nickel Ferrite 함유 Poly(organosiloxane) Rubber Nanocomposite의 제조와 특성)

  • Kang Doo Whan;Lee Kweon Soo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2005
  • $\alpha,\omega-Vinyl$ poly (dimethyl-methylphenyl) siloxane prepolymer (VPMPS ) was prepared by the equilibrium polymerization of octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethyl-1,3,5-triphenylcyclotrisiloxane $(D_3^{Me,Ph)$, and 1,1,3,3-tetramethyl-1,3-divinyldisiloxane (MVS). And also, of $\alpha,\omega-hydrogen$ poly(dimethyl-methyl)siloxane prepolymer (HPDMS) as end blocker was prepared from octamethylcyclotetrasiloxane $(D_4)$, 1,3,5-trimethylcyclotrisiloxane $(D_3^:Me,H})$, and 1,1,3,3-tetramethyldisiloxane (MS). Nickel ferrite nanoparticles having spinel magnetic material was prepared by the sol-gel method using PAA as a chelating agent. Poly(organosiloxane) rubber nanocomposite containing silica and nickel ferrite ultrafine powder modified with 1,3-divinyltetramethyldisilazane (VMS) was prepared by compounding VPMPS, HPDMS, and catalyst in high speed dissolver. The mechanical properties, heat dissipating away characteristics, and volume resistivities for POX-30 and POX-50 were measured.

Electrical characteristics of Field Effect Thin Film Transistors with p-channels of CdTe/CdHgTe Core-Shell Nanocrystals (CdTe/CdHgTe 코어쉘 나노입자를 이용한 P채널 전계효과박막트렌지스터의 전기적특성)

  • Kim, Dong-Won;Cho, Kyoung-Ah;Kim, Hyun-Suk;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1341-1342
    • /
    • 2006
  • Electrical characteristics of field-effect thin film transistors (TFTs) with p-channels of CdTe/CdHgTe core-shell nanocrystals are investigated in this paper. For the fabrication of bottom- and top-gate TFTs, CdTe/CrHgTe nanocrystals synthesized by colloidal method are first dispersed on oxidized p+ Si substrates by spin-coating, the dispersed nanoparticles are sintered at $150^{\circ}C$ to form the channels for the TFTs, and $Al_{2}O_{3}$ layers are deposited on the channels. A representative bottom-gate field-effect TFT with a bottom-gate $SiO_2$ layer exhibits a mobility of $0.21cm^2$/ Vs and an Ion/Ioff ratio of $1.5{\times}10^2$ and a representative top-gate field-effect TFT with a top-gate $Al_{2}O_{3}$ layer provides a field-effect mobility of $0.026cm^2$/ Vs and an Ion/Ioff ratio of $2.5{\times}10^2$. $Al_{2}O_{3}$ was deposited for passivation of CdTe/CdHgTe core-shell nanocrystal layer, resulting in enhanced hole mobility, Ior/Ioff ratio by 0.25, $3{\times}10^3$, respectively. The CdTe/CdHgTe nanocrystal-based TFTs with bottom- and top gate geometries are compared in this paper.

  • PDF

Gas sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH (NH4OH 수용액 하에서 Cu 호일의 산화를 통해 합성한 CuO 나노벽의 가스센싱 특성)

  • ;;;Lee, Si-Hong;Lee, Sang-Uk;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.141-141
    • /
    • 2018
  • Copper is one of the most abundant metals on earth. Its oxide (CuO) is an intrinsically p-type metal-oxide semiconductor with a bandgap ($E_g$) of 1.2-2.0 eV 1. Copper oxide nanomaterials are considered as promising materials for a wide range of applications e.g., lithium ion batteries, dye-sensitized solar cells, photocatalytic hydrogen production, photodetectors, and biogas sensors 2-7. Recently, high-density and uniform CuO nanostructures have been grown on Cu foils in alkaline solutions 3. In 2011, T. Soejima et al. proposed a facile process for the oxidation synthesis of CuO nanobelt arrays using $NH_3-H_2O_2$ aqueous solution 8. In 2017, G. Kaur et al. synthesized CuO nanostructures by treating Cu foils in $NH_4OH$ at room temperature for different treatment times 9. The surface treatment of Cu in alkaline aqueous solutions is a potential method for the mass fabrication of CuO nanostructures with high uniformity and density. It is interesting to compare the gas sensing properties among CuO nanomaterials synthesized by this approach and by others. Nevertheless, none of above studies investigated the gas sensing properties of as-synthesized CuO nanomaterials. In this study, CuO nanowalls versus nanoparticles were synthesized via the oxidation process of Cu foil in NH4OH solution at $50-70^{\circ}C$. The gas sensing properties of the as-prepared CuO nanoplates were examined with $C_2H_5OH$, $CH_3COCH_3$, and $NH_3$ at $200-360^{\circ}C$.

  • PDF

Spectroscopic Analysis on Michael Addition Reaction of Secondary Amino Groups on Silica Surface with 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate (2차 아미노기가 결합된 실리카 나노 입자 표면에 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 대한 분광학적 분석)

  • Lee, Sangmi;Ha, Ki Ryong
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]ethylenediamine (BTPED) silane coupling agent, which has two secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce polymerizable methacrylate groups by Michael addition reaction. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and liquid and solid state cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand the reactions between N-H groups of BTPED modified silica surface and acrylate groups of AHM monomer. We confirmed Michael addition reaction between BTPED modified silica and AHM completed in 2 hr reaction time. We also found increased methacrylate group introduction with increase of mol ratio of the acrylate group of AHM to N-H group of BTPED modified silica by increase of C=O peak area of measured FTIR spectra. These results were also supported by EA and solid state $^{13}C$ and $^{29}Si$ NMR results.