Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.1.057

Electrical and Magnetic Properties of Tunneling Device with FePt Magnetic Quantum Dots  

Pak, Sang-Woo (Quantum-Function Research Laboratory and Department of Physics, Hanyang University)
Suh, Joo-Young (Quantum-Function Research Laboratory and Department of Physics, Hanyang University)
Lee, Dong-Uk (Quantum-Function Research Laboratory and Department of Physics, Hanyang University)
Kim, Eun-Kyu (Quantum-Function Research Laboratory and Department of Physics, Hanyang University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.1, 2011 , pp. 57-62 More about this Journal
Abstract
We have studied the electrical and magnetic transport properties of tunneling device with FePt magnetic quantum dots. The FePt nanoparticles with a diameter of 8~15 nm were embedded in a $SiO_2$ layer through thermal annealing process at temperature of $800^{\circ}C$ in $N_2$ gas ambient. The electrical properties of the tunneling device were characterized by current-voltage (I-V) measurements under the perpendicular magnetic fields at various temperatures. The nonlinear I-V curves appeared at 20 K, and then it was explained as a conductance blockade by the electron hopping model and tunneling effect through the quantum dots. It was measured also that the negative magneto-resistance ratio increased about 26.2% as increasing external magnetic field up to 9,000 G without regard for an applied electric voltage.
Keywords
FePt; Tunneling device; Quantum dot; Magnetoresistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sun, Adv. Mater. 18, 393 (2006).   DOI
2 V. Aleksandrovic, D. Greshnykh, I. Randjelovic, A. Fromsdorf, A. Kornowski, S. V. Roth, C. Klinke, and H. Weller, ACS Nano 2, 1123 (2008).   DOI
3 J. Carrey, P. Seneor, N. Lidgi, H. Jaffres, F. Nguyen Van Dau, A. Fert, A. Friederich, F. Montaigne, and A. Vaures, J. Appl. Phys. 95, 1265 (2004).   DOI
4 K. Yakushiji, E. Franck, I. Hiroshi, Y. Kazutaka, M. Seiji, T. Koki, T. Saburo, M. Sadamichi, and F. Hiroyasu, Nature materials 4, 57 (2005).   DOI
5 S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).   DOI
6 D. L. Klein, R. Roth, A. K. Lim, A. P. Alivisatos, and P. L. McEuen, Nature 389, 699 (1997).   DOI
7 Y. Kim, K. H. Park, T. H. Chung, H. J. Bark, J. Y. Yi, W. C. Choi, and E. K. Kim, Korean Vac. Soc. 10, 44 (2001).
8 J. Lohau, A. Carl, S. Kirsch, and E. F. Wassermann, Appl. Phys. Lett. 78, 2020 (2001).   DOI
9 E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O. Brien, and C. B. Murray, Nature 439, 55 (2006).   DOI
10 C. T. Black, C. B. Murray, R. L. Sandstrom, and S. Sun, Science 290, 1131 (2000).   DOI   ScienceOn
11 H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, Nature 420, 395 (2002).   DOI