Browse > Article
http://dx.doi.org/10.5370/JEET.2018.13.6.2425

Electrical and Thermo-mechanical Properties of DGEBA Cycloaliphatic Diamine Nano PA and SiO2 Composites  

Trnka, Pavel (Faculty of Electrical Engineering, University of West Bohemia)
Mentlik, Vaclav (Faculty of Electrical Engineering, University of West Bohemia)
Harvanek, Lukas (Faculty of Electrical Engineering, University of West Bohemia)
Hornak, Jaroslav (Faculty of Electrical Engineering, University of West Bohemia)
Matejka, Libor (Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic)
Publication Information
Journal of Electrical Engineering and Technology / v.13, no.6, 2018 , pp. 2425-2433 More about this Journal
Abstract
This study investigates a new organic based material and its dielectric and mechanical properties. It is a comprehensive nanocomposite comprising a combination of various types of nanofillers with hydrophobic silica nanoparticles (AEROSIL R 974) as a matrix modifier and a polyamide nano nonwoven textile, Ultramid-Polyamide 6, pulped in the electrostatic field as a dielectric barrier. The polymer matrix is an epoxy network based on diglycidyl ether of bisphenol A (DGEBA) and cycloaliphatic diamine (Laromine C260). The designed nanocomposite material is an alternative to the conventional three-component composites containing fiberglass and mica with properties that exceed current electroinsulating systems (volume resistivity on the order of $10^{16}{\Omega}{\cdot}m$, dissipation factor tan ${\delta}=4.7{\cdot}10^{-3}$, dielectric strength 39 kV/mm).
Keywords
Dielectric; Nanocomposite; Nonwoven; Polyamide; Thermo-mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Artbauer, "Electric strength of polymers," J. Phys. D., vol. 29, no. 2, pp. 446-56, Feb. 1996.   DOI
2 J. K. Nelson, Y. Huang, T.M. Krentz, L. S. Schadler, J. Dryzek, B. C. Benicewicz, M. Bell, "Free volume in nanodielectrics," in Proc. ICPADM, 2015, pp. 40-43.
3 G. H. Miller, "Silicone resin rich mica paper laminates for class H operation and radiation resistance," in Proc. EIC, 1975, pp. 273-275.
4 L. Harvanek, "Nanomaterials for electrotechnic," Doctoral Dissertation, University of West Bohemia, Pilsen, 2017.
5 V. Boucher, P. Rain, G. Teissedre, P. Schlupp, "Mechanical and dielectric properties of glass-micaepoxy composites along accelerated thermo-oxidative aging," in Proc. ICSD, 2007, pp. 162-165.
6 International Electrotechnical Commission, "Electrical Insulation - Thermal Evaluation and Designation" IEC Standard 60085:2007, Nov. 7, 2007.
7 J. Dong, Z. Shao, Y. Wang, Z. Lv, X. Wang, K. Wu, We. Li, C. Zhang, "Effect of temperature gradient on space charge behavior in epoxy resin and its nanocomposites," IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 3, pp. 1537-1546, Jun. 2017.   DOI
8 T. G. Lewis, "Nanometric dielectrics," IEEE Trans. Dielectr. Electr. Insul.. vol. 1, no. 5, pp. 812-825, Oct. 1994.   DOI
9 D. R. Johnston, M. Markovitz, "Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors," US Patent 4760296, Jul. 26, 1988.
10 P. O. Henk, T. W. Korsten, T. Kvarts, "Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica," High Perform. Polym. vol. 11, no. 3, pp. 281-296, Sept. 1999.   DOI
11 J. K. Nelson, J. Fothergill, L. A. Dissado, W. Peasgood, "Towards an understanding of nanometric dielectrics," in Proc. CEIDP, 2002, pp. 295-298.
12 T. Tanaka, T. Imai, "Advances in nanodielectric materials over the past 50 years," IEEE Elect. Insul. Mag., vol. 29, no. 1, pp. 10-23, Jan.-Feb. 2013.   DOI
13 R. B. Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, T.O. Varghese. "An overview of polymer-clay nanocomposites," Clay-Polymer Nanocomposites. Amsterdam: Elsevier. pp. 29-81, 2017.
14 S. Yu, P. Hing, "Thermal and dielectric properties of fiber reinforced polystyrene composites," Polym. Compos., vol. 29, no. 11, pp. 1199-1202, Nov. 2008.   DOI
15 G. G. Raju, "Dielectrics in Electric Fields," Boca Raton: CRC Press, Taylor & Francis Group, 2016.
16 R. Stewart, "Thermoplastic composites - recyclable and fast to process," Reinf. Plast., vol. 55, no. 3, pp. 22-28, May-Jun. 2011.   DOI
17 W. Yang. R. Yi, X. Yang, M. Xu, S. Hui, X. Cao, "Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites," Trans. Electr. Electron. Mater., vol. 13, no. 3, pp. 116-120, Jun, 2012.   DOI
18 A. C. Biju, T. A. A. Victoire, D. E. Salvaraj, "Enhancement of dielectric properties of polyamide enamel insulation in high voltage apparatuses used in medical electronics by adding nano composites of $SiO_2$ and $Al_2O_3$ fillers," J. Electr. Eng. Technol., vol. 10, no. 4, Jul. 2015.
19 S. K. Singh, S. Sing, A. Kumar, A. Jain, "Thermo-mechanical behavior of $TiO_2$ dispersed epoxy composites," Eng. Fract. Mech., vol. 184, pp. 241-248, Oct. 2017.   DOI
20 N. Loganathan, S. Chandrasekar, "Analysis of surface tracking of micro and nano size alumina filled silicone rubber for high voltage AC transmission," J. Electr. Eng. Technol., vol. 8, no. 2, Mar. 2013.
21 T. Andritsch, R. Kochetov, P. H. F. Morshuis, J. J. Smit, "Dielectric properties and space charge behavior of MgO-epoxy nanocomposites," in Proc. ICSD, 2010, pp. 1-4.
22 I. A. Tsekmes, R. Kochetov, P. H. F. Morshuis, J. J. Smit, "AC breakdown strength of epoxy-boron nitride nanocomposites: Trend & reproducibility," in Proc. EIC, 2015, pp. 446-449.
23 M. Liang, K. L. Wong, "Study of mechanical and thermal performances of epoxy resin filled with micro particles and nanoparticles," Energy Procedia, vol. 110, pp. 156-161, March 2017.   DOI
24 J. Bocek, L. Matejka, V. Mentlik, P. Trnka, M. Slouf, "Electrical and thermomechanical properties of epoxy-POSS nanocomposites," Eur. Polym. J., vol. 47, no. 5, May 2011.
25 A. S. Vaughan, G. Gherbaz, S. G. Swingler, N. A. Rashid, "Polar/non-polar polymer blends: on structural evolution and the electrical properties of blends of polyethylene and ethylene - vinyl acetate," in Proc. CEIDP, 2006, pp. 272-275.
26 K. Nam, J. Cho, H. Yeo, "Thermomechanical behavior of polymer composites based on edge-eselectively functionalized graphene nanosheets". Polymers, vol 10, no. 1. pp. 1-11, Jan. 2018.   DOI
27 E. Marsano, L. Francis, F. Giunco, "Polyamide 6 nanofibrous nonwovens via electrospinning," J. Appl. Polym. Sci., vol. 117, no. 3, pp. 1754-1765, Aug. 2010.   DOI
28 M. H. Alaei, P. Mahajan, M. Brieu, D. Kondo, S. J. A. Rizvi, S. Kumar, N. Bhatnagar, "Effect of particle size on thermomechanical properties of particulate polymer composite," Iran. Polym. J., vol. 22, n. 11, pp. 853-863. Nov. 2013.   DOI
29 G. Liu, G. H. Zhang, D. Zhang, Z. Zhang, X. An, X. Yi, "On depression of glass transition temperature of epoxy nanocomposites," J. Mater. Sci., vol. 47, no. 19, pp. 6891-6895, Oct. 2012.   DOI
30 C. Zou, J. C. Fothergill, S. W. Rowe, "The effect of water absorption on the dielectric properties of epoxy nanocomposites," IEEE Trans. Dielectr. Electr. Insul., vol. 15, no. 1, pp. 106-117, Feb. 2008.   DOI
31 International Electrotechnical Commission, "Dielectric and resistive properties of solid insulating materials - Part 3-2: Determination of resistive properties (DC methods)," IEC Standard 62631-3-2:2015, Apr. 12, 2015.
32 G. C. Stone, I. Culbert, E A. Boulter, H. Dhirani, "Electrical Insulation for Rotating Machines:Design, Evaluation, Aging, Testing, and Repair," Wiley-IEEE Press: Piscataway, 2014, pp. 111-131.
33 R. Brutsch, M. Tari, K. Frohlich, T. Weiers, R. Vogelsang, "Insulation failure mechanisms of power generators," IEEE Elect. Insul. Mag., vol. 24, no. 4, pp. 17-25, Jul.-Aug. 2008.   DOI
34 C. M. Laffoon, C. F. Hill, G. Lee Moses, L. J. Berberich, "A new high-voltage insulation for turbinegenerator stator windings," Trans. Am. Inst. Electr. Eng., vol. 70, no. 1, pp. 721-730, Jul. 1951.   DOI
35 B. Dewimille and A.R. Bunsell, "Accelerated ageing of a glass fibre-reinforced epoxy resin in water," Composites, vol. 14, no. 1, pp. 35-40, Jan. 1983.   DOI
36 N. Andraschek, A. J. Wanner, C. Ebner, G. Riess, "Mica/epoxy-composites in the electrical industry: applications, composites for insulation, and investigations on failure mechanisms for prospective optimizations," Polymers, vol. 8, pp. 1-21, Aug. 2016.
37 International Electrotechnical Commission, "Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including metre wavelengths," IEC Standard 60250:1969, Jan. 1, 1969.
38 International Electrotechnical Commission, "Methods of test for electric strength of solid insulating materials," IEC Standard 60243-1, Mar. 26, 2013.
39 V.I. Ushakov, "Insulation of High-Voltage Equipment," New York: Springer, 2004, pp. 11-15.
40 R. L. Griffeth, E. R. Younglove, "The manufacture and processing of mica paper for use in electrical insulation," in Proc. COI, 1951, pp. 22-23.
41 Z. Jia, Y. Hao, H. Xie, "The degradation assessment of epoxy/mica insulation under multi-stresses aging," in IEEE Trans. Dielectr. Electr. Insul., vol. 13, no. 2, pp. 415-422, Apr. 2006.   DOI
42 R. Goetter. M. Winkeler, "New developments in unsaturated polyester resins used for electrical insulation," in Proc. EEIC, 2001, pp. 51-56.