• Title/Summary/Keyword: SiC Schottky diode

Search Result 77, Processing Time 0.033 seconds

Fabrication of Pd/poly 3C-SiC Schottky diode hydrogen sensors (Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작)

  • Chung, Dong-Yong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.236-236
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C - SiC thin film grown on Si substrates with thermal oxide layer using APCVD. Pd/poiy 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2\times10^{-3}\;A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about $400^{\circ}C$. According to $H_2$ concentrations, their barrier height($\Phi_{Bn}$) were changed 0.587 eV, 0.579 eV, 0.572 eV and 0.569 eV, respectively. the current was increased. Characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

  • PDF

Hydrogen Gas Sensing Characteristics of Pd-SiC Schottky Diode (Pd-SiC 쇼트키 다이오드의 수소 가스 감응 특성)

  • Kim, Chang-Kyo;Lee, Joo-Hun;Lee, Young-Hwan;Choi, Suk-Min;Cho, Nam-Ihn
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.448-453
    • /
    • 1999
  • A Pd-SiC Schottky diode for detection of hydrogen gas operating at high temperature was explored. Hydrogen-sensing behaviors of Pd-SiC Schottky diode were analyzed as a function of hydrogen concentration and temperature by I-V and ${\Delta}I$-t methods under steady-state and transient conditions. The effect of hydrogen adsorption on the barrier height was investigated. Analysis of the steady-state kinetics using I-V method confirmed that the atomistic hydrogen adsorption process is responsible for the barrier height change in the diode.

  • PDF

A Study on a Palladium-Silicon Garbide Schottky Diode as a Hydrogen Gas Sensor (Pd-SiC 쇼트키 다이오드의 수소 가스 감지 특성)

  • Lee, Joo-Hun;Lee, Young-Hwan;Kim, Chang-Kyo;Cho, Nam-Ihn
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.858-860
    • /
    • 1998
  • A Pd-SiC Schottky diode for detection of hydrogen gas operating at high temperature was fabricated. Hydrogen-sensing behaviors of Pd-SiC Schottky diode have been analyzed as a function of hydrogen concentration and temperature by I-V and ${\Delta}I$-t methods under steady-state and transient conditions. The effect of hydrogen adsorption on the barrier height was investigated. Analysis of the steady-state kinetics using I-V method confirmed that the atomistic hydrogen adsorption process is responsible for the barrier height change in the diode.

  • PDF

Fabrication of polycrystalline 3C-SiC diode for harsh environment micro chemical sensors and their characteristics (극한 환경 마이크로 화학센서용 다결정 3C-SiC 다이오드 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.195-196
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline 3C-SiC thin film diodes for extreme environment applications, in which the this thin film was deposited onto oxidized Si wafers by APCVD using HMDS In this work, the optimized growth temperature and HMDS flow rate were $1,100^{\circ}C$ and 8sccm, respectively. A Schottky diode with a Au, Al/poly 3C-SiC/$SiO_2$/Si(n-type) structure was fabricated and its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84V, over 140V, 61nm, and $2.7{\times}10^{19}cm^2$, respectively. To produce good ohmic contact, Al/3C-SiC were annealed at 300, 400, and $500^{\circ}C$ for 30min under a vacuum of $5.0{\times}10^{-6}$Torr. The obtained p-n junction diode fabricated by poly 3C-SiC had similar characteristics to a single 3C-SiC p-n junction diode.

  • PDF

$CH_4$ Gas Sensor Utilizing Pd-SiC Schottky Diode (Pd-SiC 쇼트키 다이오드를 이용한 $CH_4$ 가스센서)

  • 김창교;이주헌;이영환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.163-166
    • /
    • 1998
  • The mechanism of methane sensing by Pd-SiC diode was investigated over the temperature range of 400~$600^{\circ}C$. The effects or methane gas reaction on the parameters such as barrier height, initial rate of methane gas reaction are investigated. The methane gas reaction kinetics on the device are also discussed. The physical and chemical mechanism responsible for methane detection are proposed. Analysis of steady-state reaction kinetics using I-V method confirmed that methane gas reaction processes are responsible for the barrier height change in the diode.

  • PDF

Effect on Metal Guard Ring in Breakdown Characteristics of SiC Schottky Barrier Diode (금속 가드 링이 SiC 쇼트키 다이오드의 항복전압에 미치는 영향)

  • Kim, Seong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.877-882
    • /
    • 2005
  • In order to fabricate a high breakdown SiC-SBD (Schottky barrier diode), we investigate an effect on metal guard ring (MGR) in breakdown characteristics of the SiC-SBD. The breakdown characteristics of MGR-type SiC-SBD is significantly dependent on both the guard ring metal and the alloying time of guard ring metal. The breakdown characteristics of MGR-type SiC-SBDs are essentially improved as the alloying time of guard ring metal is increased. The SiC-SBD without MGR shows less than 200 V breakdown voltage, while the SiC-SBD with Al MGR shows approximately 700 V breakdown voltage. The improvement in breakdown characteristics is attributed to the field edge termination effect by the MGR, which is similar to an implanted guard ring-type SiC-SBD. There are two breakdown origins in the MGR-type SiC-SBD. One is due to a crystal defects, such as micropipes and stacking faults, in the Epi-layers and the SiC substrate, and occurs at a lower electric field. The other is due to the destruction of guard ring metal, which occurs at a higher electric field. The demolition of guard ring metal is due to the electric field concentration at an edge of Schottky contact metal.

Electrical characteristics of polycrystalline 3C-SiC thin film diodes (다결정 3C-SiC 박막 다이오드의 전기적 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.259-262
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, $H_{2}$, and Ar gas at $1150^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si (n-type) structure was fabricated. Its threshold voltage ($V_{bi}$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_{D}$) value were measured as 0.84 V, over 140 V, 61 nm, and $2.7{\times}10^{19}cm^{-3}$, respectively. Moreover, for the good ohmic contact, Al/poly 3C-SiC/Si (n-type) structure was annealed at 300, 400, and $500^{\circ}C$, respectively for 30 min under the vacuum condition of $5.0{\times}10^{-6}$ Torr. Finally, the p-n junction diodes fabricated on the poly 3C-Si/Si (p-type) were obtained like characteristics of single 3CSiC p-n junction diode. Therefore, poly 3C-SiC thin film diodes will be suitable for microsensors in conjunction with Si fabrication technology.

Use of 1.7 kV and 3.3 kV SiC Diodes in Si-IGBT/ SiC Hybrid Technology

  • Sharma, Y.K.;Coulbeck, L.;Mumby-Croft, P.;Wang, Y.;Deviny, I.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1356-1361
    • /
    • 2018
  • Replacing conventional Si diodes with SiC diodes in Si insulated gate bipolar transistor (IGBT) modules is advantageous as it can reduce power losses significantly. Also, the fast switching nature of the SiC diode will allow Si IGBTs to operate at their full high-switching-speed potential, which at present conventional Si diodes cannot do. In this work, the electrical test results for Si-IGBT/4HSiC-Schottky hybrid substrates (hybrid SiC substrates) are presented. These substrates are built for two voltage ratings, 1.7 kV and 3.3 kV. Comparisons of the 1.7 kV and the 3.3 kV Si-IGBT/Si-diode substrates (Si substrates) at room temperature ($20^{\circ}C$, RT) and high temperature ($H125^{\circ}C$, HT) have shown that the switching losses in hybrid SiC substrates are miniscule as compared to those in Si substrates but necessary steps are required to mitigate the ringing observed in the current waveforms. Also, the effect of design variations on the electrical performance of 1.7 kV, 50 A diodes is reported here. These variations are made in the active and termination regions of the device.

A study on CO gas sensing Characteristics of Pt-SiC $SnO_2$-pt-SiC Schottky Diodes (Pt 및 Pt-$SnO_2$를 전극으로 하는 SiC 쇼트키 다이오드의 CO 가스 감응 특성)

  • Kim, C.K.;Noh, I.H.;Yang, S.J.;Lee, J.H.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.805-808
    • /
    • 2002
  • A carbon monoxide gas sensor utilizing Pt-SiC, Pt-SnO2-SiC diode structure was fabricated. Since the operating temperature for silicon devices in limited to 200oC, sensor which employ the silicon substrate can not at high temperature. In this study, CO gas sensor operating at high temperature which utilize SiC semiconductor as a substrate was developed. Since the SiC is the semiconductor with wide band gap. the sensor at above $700^{\circ}C$. Carbon monoxide-sensing behavior of Pt-SiC, Pt-SnO2-SiC diode is systematically compared and analyzed as a function of carbon monoxide concentration and temperature by I-V and ${\Delta}$I-t method under steady-state and transient conditions.

  • PDF

Electrical Characteristics Analysis Depending on the Portion of MPS Diode Fabricated Based on 4H-SiC in Schottky Region (4H-SiC 기반으로 제작된 MPS Diode의 Schottky 영역 비율에 따른 전기적 특성 분석)

  • Lee, Hyung-Jin;Kang, Ye-Hwan;Jung, Seung-Woo;Lee, Geon-Hee;Byun, Dong-Wook;Shin, Myeong-Choel;Yang, Chang-Heon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.241-245
    • /
    • 2022
  • In this study, we measured and comparatively analyzed the characteristics of MPS (Merged Pin Schottky) diodes in 4H-SiC by changing the areal ratio between the Schottky and PN junction region. Increasing the temperature from 298 K to 473 K resulted in the threshold voltage shifting from 0.8 V to 0.5 V. A wider Schottky region indicates a lower on-resistance and a faster turn-on. The effective barrier height was smaller for a wider Schottky region. Additionally, the depletion layer became smaller under the influence of the reduced effective barrier height. The wider Schottky region resulted in the ideality factor being reduced from 1.37 to 1.01, which is closer to an ideal device. The leakage saturation current increased with the widening Schottky region, resulting in a 1.38 times to 2.09 times larger leakage current.