DOI QR코드

DOI QR Code

Electrical Characteristics Analysis Depending on the Portion of MPS Diode Fabricated Based on 4H-SiC in Schottky Region

4H-SiC 기반으로 제작된 MPS Diode의 Schottky 영역 비율에 따른 전기적 특성 분석

  • Lee, Hyung-Jin (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kang, Ye-Hwan (Yes Power Technix) ;
  • Jung, Seung-Woo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Geon-Hee (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Byun, Dong-Wook (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Shin, Myeong-Choel (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Yang, Chang-Heon (Yes Power Technix) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이형진 (광운대학교 전자재료공학과) ;
  • 강예환 ((주)예스파워테크닉스) ;
  • 정승우 (광운대학교 전자재료공학과) ;
  • 이건희 (광운대학교 전자재료공학과) ;
  • 변동욱 (광운대학교 전자재료공학과) ;
  • 신명철 (광운대학교 전자재료공학과) ;
  • 양창헌 ((주)예스파워테크닉스) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2021.11.26
  • Accepted : 2021.12.15
  • Published : 2022.05.01

Abstract

In this study, we measured and comparatively analyzed the characteristics of MPS (Merged Pin Schottky) diodes in 4H-SiC by changing the areal ratio between the Schottky and PN junction region. Increasing the temperature from 298 K to 473 K resulted in the threshold voltage shifting from 0.8 V to 0.5 V. A wider Schottky region indicates a lower on-resistance and a faster turn-on. The effective barrier height was smaller for a wider Schottky region. Additionally, the depletion layer became smaller under the influence of the reduced effective barrier height. The wider Schottky region resulted in the ideality factor being reduced from 1.37 to 1.01, which is closer to an ideal device. The leakage saturation current increased with the widening Schottky region, resulting in a 1.38 times to 2.09 times larger leakage current.

Keywords

Acknowledgement

This work was supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451), Technology Innovation Program (20003540) and the excellent researcher support project of Kwangwoon University in 2021.

References

  1. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (John Wiley & Sons, Singapore, 2014). pp. 1-6.
  2. B. J. Baliga, J. A ppl. Phys., 53, 1759 (1982). [DOI: https://doi.org/10.1063/1.331646]
  3. J. A. Cooper, Mater. Sci. Forum, 389, 15 (2002). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.389-393.15]
  4. Y. J. Lee, S. Cho, J. H. Seo, S. J. Min, J. I. An, J. M. Oh, S. M. Koo, and D. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 367 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.6.367]
  5. R. Rupp, A. Wiedenhofer, P. Friedrichs, D. Peters, R. Schorner, and D. Stephani, Mater. Sci. Forum, 264, 89 (1998). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.264-268.89]
  6. J. Seccatore, G. de Tomi, and M. Veiga, Mater. Sci. Forum, 805, 395 (2015). [DOI: https://doi.org/10.4028/www.scientific.net/msf.805.395]
  7. T. Takaku, S. Igarashi, T. Nishimura, Y. Onozawa, S. Miyashita, O. Ikawa, N. Fujishima, and T. Heinzel, Proc. of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (VDE, Nuremberg, Germany, 2015) p. 1. [DOI: https://doi.org/10.1109/ICPE.2015.7167880]
  8. T. Takaku, H. Wang, N. Matsuda, S. Igarashi, T. Nishimura, S. Miyashita, and O. Ikawa, Proc. 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia) (IEEE, Seoul, Korea, 2015) p. 844. [DOI: https://doi.org/10.1109/ICPE.2015.7167880]
  9. S. J. Min, M. C. Shin, N. Thi Nguyen, J. M. Oh, and S. M. Koo, Materials, 13, 445 (2020). [DOI: https://doi.org/10.3390/ma13020445]