• Title/Summary/Keyword: SiC MOSFET

검색결과 165건 처리시간 0.029초

Trench Shield 구조를 갖는 3.3kV급 저저항 4H-SiC DMOSFET (Low Resistance 3.3kV 4H-SiC Trench Shielded DMOSFET)

  • 차규현;김광수
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.619-625
    • /
    • 2020
  • 본 논문에서는 Trench를 이용하여 기존 C-DMOSFET(Conventional DMOSFET)과 S-DMOSFET(Shielded DMOSFET) 구조보다 더 깊은 영역에 P+ shielding을 형성한 TS-DMOSFET(Trench Shielded DMOSFET) 구조를 제안하였으며 TCAD 시뮬레이션을 통해 C- 및 S-DMOSFET 구조와 전기적 특성을 비교하였다. 제안한 구조는 Source에 Trench를 형성한 후 도핑을 진행하므로 SiC 물질 특성과 관계없이 깊은 영역에 P+ shielding을 형성할 수 있다. 이로 인해 P-base에 인가되는 전압이 감소하여 리치스루 효과가 완화되었다. 그 결과 세 구조 모두 3.3kV의 항복 전압을 가질 때 제안한 구조의 온저항은 9.7mΩ㎠으로 C-DMOSFET과 S-DMOSFET의 온저항인 30.5mΩ㎠, 19.3mΩ㎠ 대비 각각 68%, 54% 개선된 온저항을 갖는다.

MOSFET 구조내 $HfO_2$게이트절연막의 Nanoindentation을 통한 Nano-scale의 기계적 특성 연구

  • 김주영;김수인;이규영;이창우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.317-318
    • /
    • 2012
  • 현재의 반도체 산업에서 Hafnium oxide와 Hafnium silicates같은 high-k 물질은 CMOS gate와 DRAM capacitor dielectrics로 사용하기 위한 대표적인 물질에 속한다. MOSFET (metal oxide semiconductor field effect transistor)구조에서 gate length는 16 nm 이하로 계속 미세화가 연구 중이고, 또한 gate는 기존구조에서 Multi-gate구조로 다변화가 일어나고 있다. 이를 통해 게이트 절연막은 그 구조와 활용범위가 다양해지게 될 것이다. 동시에 leakage current와 dielectric break-down을 감소시키는 연구가 중요해지고 있다. 그러나 나노 영역에서의 기계적 특성에 대한 연구는 전무한 상태이다. 따라서 복잡한 회로 공정, 다양한 Multi-gate 구조, 신뢰도의 향상을 위해서는 유전박막 물질자체와 계면에서의 물리적, 기계적인 특징의 측정이 상당히 중요해지고 있다. 이에 본 연구는 Nano-indenter의 통해 경도(Hardness)와 탄성계수(Elastic modulus) 등의 측정을 통하여 시료 표면의 나노영역에서의 기계적 특성을 연구하고자 하였다. $HfO_2$게이트 절연막은 rf magnetron sputter를 이용해 Si (silicon) (100)기판위에 박막형태로 증착하였고, 이후 furnace에서 질소분위기로 온도(400, 450, $500^{\circ}C$)를 달리하여 20분 열처리를 하였다. 또한 Weibull distribution을 이용해 박막의 characteristic value를 계산하였으며, 실험결과 열처리 온도가 $400^{\circ}C$에서 $500^{\circ}C$로 증가함에 따라 경도와 탄성계수는 7.4 GPa에서 10.65 GPa으로 120.25 GPa에서 137.95 GPa으로 각각 증가하였다. 이는 재료적 측면으로 재료의 구조적 우수성이 증가된 것으로 판단된다.

  • PDF

WBG 전력반도체 최신 기술 및 동향 (High Technology and Latest Trends of WBG Power Semiconductors)

  • 이정현;정도현;오승진;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제25권4호
    • /
    • pp.17-23
    • /
    • 2018
  • Recently, electric semiconductors became an issue because of efficient use of energy and compaction of electronics. Silicon electric semiconductors are difficult to put into it because of its physical limitations. Hence, the study of WBG (Wideband Gap) semiconductors like SiC and GaN began. These devices received attention because it can be miniaturized and worked at high temperatures over $300^{\circ}C$. WBG MOSFET electric semiconductors can show performance like silicon IGBT. This can solve the current problem of IGBT tail. The current study shows the technical principles and issues related to SiC and GaN power semiconductors. WBG devices can achieve high performance compared to silicon, but its performance can't be fully utilized because of lack in bonding technology. Therefore, this review introduces research on WBG devices and their packaging issues.

Optimization of highly scalable gate dielectrics by stacking Ta2O5 and SiO2 thin films for advanced MOSFET technology

  • 김태완;조원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.259-259
    • /
    • 2016
  • 반도체 산업 전반에 걸쳐 이루어지고 있는 연구는 소자를 더 작게 만들면서도 구동능력은 우수한 소자를 만들어내는 것이라고 할 수 있다. 따라서 소자의 미세화와 함께 트랜지스터의 구동능력의 향상을 위한 기술개발에 대한 필요성이 점차 커지고 있으며, 고유전(high-k)재료를 트랜지스터의 게이트 절연막으로 이용하는 방법이 개발되고 있다. High-k 재료를 트랜지스터의 게이트 절연막에 적용하면 낮은 전압으로 소자를 구동할 수 있어서 소비전력이 감소하고 소자의 미세화 측면에서도 매우 유리하다. 그러나, 초미세화된 소자를 제작하기 위하여 high-k 절연막의 두께를 줄이게 되면, 전기적 용량(capacitance)은 커지지만 에너지 밴드 오프셋(band-offset)이 기존의 실리콘 산화막(SiO2)보다 작고 또한 열공정에 의해 쉽게 결정화가 이루어지기 때문에 누설전류가 발생하여 소자의 열화를 초래할 수 있다. 따라서, 최근에는 이러한 문제를 해결하기 위하여 게이트 절연막 엔지니어링을 통해서 누설전류를 줄이면서 전기적 용량을 확보할 수 있는 연구가 주목받고 있다. 본 실험에서는 high-k 물질인 Ta2O5와 SiO2를 적층시켜서 누설전류를 줄이면서 동시에 높은 캐패시턴스를 달성할 수 있는 게이트 절연막 엔지니어링에 대한 연구를 진행하였다. 먼저 n-type Si 기판을 표준 RCA 세정한 다음, RF sputter를 사용하여 두께가 Ta2O5/SiO2 = 50/0, 50/5, 50/10, 25/10, 25/5 nm인 적층구조의 게이트 절연막을 형성하였다. 다음으로 Al 게이트 전극을 150 nm의 두께로 증착한 다음, 전기적 특성 개선을 위하여 furnace N2 분위기에서 $400^{\circ}C$로 30분간 후속 열처리를 진행하여 MOS capacitor 소자를 제작하였고, I-V 및 C-V 측정을 통하여 형성된 게이트 절연막의 전기적 특성을 평가하였다. 그 결과, Ta2O5/SiO2 = 50/0, 50/5, 50/10 nm인 게이트 절연막들은 누설전류는 낮지만, 큰 용량을 얻을 수 없었다. 한편, Ta2O5/SiO2 = 25/10, 25/5 nm의 조합에서는 충분한 용량을 확보할 수 있었다. 적층된 게이트 절연막의 유전상수는 25/5 nm, 25/10 nm 각각 8.3, 7.6으로 비슷하였지만, 문턱치 전압(VTH)은 각각 -0.64 V, -0.18 V로 25/10 nm가 0 V에 보다 근접한 값을 나타내었다. 한편, 누설전류는 25/10 nm가 25/5 nm보다 약 20 nA (@5 V) 낮은 것을 확인할 수 있었으며 절연파괴전압(breakdown voltage)도 증가한 것을 확인하였다. 결론적으로 Ta2O5/SiO2 적층 절연막의 두께가 25nm/10nm에서 최적의 특성을 얻을 수 있었으며, 본 실험과 같이 게이트 절연막 엔지니어링을 통하여 효과적으로 누설전류를 줄이고 게이트 용량을 증가시킴으로써 고집적화된 소자의 제작에 유용한 기술로 기대된다.

  • PDF

탄화규소 전력반도체 기술 동향

  • 김상철
    • 전자공학회지
    • /
    • 제37권8호
    • /
    • pp.31-40
    • /
    • 2010
  • 1947년 트랜지스터의 발명을 시작으로 사이리스터, MOSFET 및 IGBT 등의 전력반도체 소자가 개발되면서 산업, 가전 및 통신 등의 다양한 분야에서 실리콘 기반의 전력반도체 소자가 활용되고 있다. 개발 당시에는 10A/수백V 정도의 전류통전능력 및 전압저지능력을 가지고 있었지만, 현재에는 8000A/12kV급의 대용량 소자까지 생산되고 있다. 이러한 전력반도제 소자는 다양한 응용분야에 서 높은 전압 저지능력, 큰 전류 통전 능력 및 빠른 스위칭 특성을 요구하고 있다. 특히 최근의 전력변환장치들은 고온동작특성 및 고효율화에 대한 요구가 더욱 강조되고 있다. 일반적인 실리콘 전력반도체소자는 물질적인 특성한계로 고온에 서의 동작 시 소자 특성이 떨어지는 특징을 보이고 있어 고온 환경에 적합한 전력반도체 소자의 필요성이 증가되어 실리콘에 비해 밴드�b이 넓은 SiC 및 GaN 등의 wide bandgap 반도체 물질의 연구가 활발히 진행되고 있다. 특히 SiC는 단결정 성장을 통한 웨이퍼화가 용이하고 소자 제작공정이 기존 실리콘공정과 유사하여 많은 연구가 진행되었으며 일부 소자에서 상용화가 진행되었다. 본고에서는 현재 활발히 진행되고 있는 탄화규소 전력반도체소자의 기술동향에 대해 소개하고자 한다.

  • PDF

실리콘 전력 MOSFET의 온도에 따른 항복전압 및 On 저항 (Temperature Dependent Breakdown Voltage and On-resistance of Si Power MOSFETs)

  • 박일용;최연익;정상구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권4호
    • /
    • pp.246-248
    • /
    • 2000
  • Closed-form expressions for the temperature dependent breakdown voltage and the on-resistance of the Si power MOSFETs were derived by employing effective temperature dependent ionization coefficient for electrons and holes. The breakdown voltage increases by 20% and the on-resistance increases 2 times when the temperature increases from 300 K to 423 K. The analytic results normalized to the values at 300 K show good agreement with the experimental data of Motorola within 3.5% and 7% for the breakdown voltage and the on-resistance, respectively.

  • PDF

SiC 전력반도체 기술개발 동향

  • 김상철
    • 전력전자학회지
    • /
    • 제14권1호
    • /
    • pp.21-25
    • /
    • 2009
  • 전력반도체소자는 1947년 트랜지스터의 출현으로 반도체시대가 도래한 이후 사이리스터, MOSFET 및 IGBT 등으로 발전하였다. 개발당시에는 10A 정도의 전류처리 능력과 수백V 정도의 진압저지능력을 가지고 있었지만, 현재에는 정격전류로는 약 8,000A, 정격전압으로는 무려 12kV 급까지 발전되었다. 그러나 전력반도체 소자의 대부분은 실리콘을 윈료로 제작되고 있으며 현재 실리콘의 물성적 한계에 직면하여 고전압, 저손실 및 고속 스위칭화에 대한 새로운 도전이 시작되고 있다. SiC 전력용 반도체는 실리콘 반도체의 이론적 물성한계를 극복할 수 있는 소재로서 80년대 이후 각광받아 왔다. 하지만 대구경의 단결정 웨이퍼 및 저결함의 에피박막의 부재로 90년대 중반까지는 가능성 있는 재료로서만 연구되었다. 90년대 중반 단결정 웨이퍼가 상용화된 이후 단결정 웨이퍼의 대구경화 및 저결함화가 급속히 진전되어 전력용 반도체 소자의 개발도 활기를 띄게 되었다. 본 기고에서는 탄화규소 반도체소자의 기술동향에 대해 소개하고자 한다.

단상 3레벨 PFC 컨버터의 모듈레이션 기법에 따른 효율비교 및 열해석 (Comparison of system efficiency and thermal analysis about single phase 3-level PFC converter with variation of switching modulation)

  • 여시준;백승훈;조영훈;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.229-230
    • /
    • 2017
  • 본 논문은 단상 3레벨 PFC 컨버터에 적용하는 두 가지 모듈레이션 기법에 따른 시스템 효율 및 스위치 발열을 비교하고, 열해석 시뮬레이션을 통한 열 분포에 대한 결과를 기반으로 적절한 방열기법 모색을 위한 근거자료를 제시한다. 제안하는 모듈레이션 기법을 통해, 주 스위치인 SiC MOSFET의 도통손실을 저감하여 시스템 효율을 향상시키며, 스위치에 발생하는 열을 저감시킨다. 앤시스 열해석 시뮬레이션을 통해 이를 확인하고, 실험을 통해 검증한다. 정격부하(5kW)에 대해 약 $27^{\circ}C$의 스위치 온도저감이 이루어졌으며, 전 부하(0.5kW ~ 5kW)에 걸쳐 약 1%의 효율이 향상되었음을 실험을 통해 확인하였다.

  • PDF

800V급 4H-SiC DMOSFET 전력 소자 구조 최적화 시뮬레이션 (A simulation study on the structural optimization of a 800V 4H-SiC Power DMOSFET)

  • 최창용;강민석;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.35-36
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to obtain a low threshold voltage ($V_{TH}$) and a high figure of merit ($V_B^2/R_{SP,ON}$). To optimize the device performance, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. These parameters are optimized using 2D numerical simulation and the 4H-SiC DMOSFET structure results in a threshold voltage ($V_{TH}$) below ~3.8V, and high figure of merit ($V_B^2/R_{SP,ON}$>${\sim}200MW/cm^2$) for a power MOSFET in $V_B$-800V range.

  • PDF

플라나변압기와 SiC 기반의 전기자동차용 3kW 고전력밀도 DC-DC 컨버터 개발 (Development of Planar Transformer and SiC Based 3 kW High Power Density DC-DC Converter for Electric Vehicles)

  • 김상진;석채영;라마단;최세완;유병우;박상훈
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.112-119
    • /
    • 2021
  • This study proposes a design method of high-power-density and high-efficiency low-voltage DC-DC converters using SiC MOSFET and the optimized planar transformer design procedure based on the figure-of-merit. The secondary rectifying circuit of the phase-shifted full-bridge converter is compared to achieve high power density and high efficiency, and the phase-shifted full bridge converter with a current-doubler rectifier is selected. The planar transformer is designed by the proposed optimized design procedure and verified by FEA simulation. To validate the proposed design method, experimental results from a 3 kW prototype are provided. The prototype achieved 95.28% maximum efficiency and a power density of 2.98 kW/L.