Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.017

High Technology and Latest Trends of WBG Power Semiconductors  

Lee, Jeong-Hyun (Department of Materials Science and Engineering, University of Seoul)
Jung, Do-hyun (Lightweight Materials Technology Center, Gyeongbuk Technopark)
Oh, Seung-jin (Duksan Hi-Metal Co. Ltd)
Jung, Jae-Pil (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 17-23 More about this Journal
Abstract
Recently, electric semiconductors became an issue because of efficient use of energy and compaction of electronics. Silicon electric semiconductors are difficult to put into it because of its physical limitations. Hence, the study of WBG (Wideband Gap) semiconductors like SiC and GaN began. These devices received attention because it can be miniaturized and worked at high temperatures over $300^{\circ}C$. WBG MOSFET electric semiconductors can show performance like silicon IGBT. This can solve the current problem of IGBT tail. The current study shows the technical principles and issues related to SiC and GaN power semiconductors. WBG devices can achieve high performance compared to silicon, but its performance can't be fully utilized because of lack in bonding technology. Therefore, this review introduces research on WBG devices and their packaging issues.
Keywords
WBG; SiC; GaN; Power semiconductor; Power module;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Ulrich, T. Theel, J. Schwan, V. Batori, M. Scheib, and H. Ehrhardt, "Low-temperature formation of ${\beta}$-silicon carbide", Diam. Relat. Mater., 6, 645 (1997).   DOI
2 J. A. Thornton, "Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings", J. Vac. Sci. Technol., 12, 830 (1975).   DOI
3 T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, "Interface Properties of Metal-oxide Semiconductor Structures on 4H-SiC {0001} and (1120) Formed by $N_2O$ Oxidation", JJAP, 44(3), 1213 (2005).
4 M. Furuhashi, T. Tanioka, M. Imaizumi, N. Miura, and S. Yamakawa, "Novel Gate Oxide Process for Realization of High Threshold Voltage in 4H-SiC MOSFET", Materials Science Forum, 778-780, 985 (2014).   DOI
5 M. Roschke, and F. Schwierz, "Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]", IEEE. Trans. Electron. Devices., 48(7), 1442 (2001).   DOI
6 A. Itoh, T. Kimoto, and H. Matsunami, "High performance of high-voltage 4H-SiC Schottky barrier diodes", IEEE. Electron. Device. Lett., 16(6), 280 (1995).   DOI
7 M. Bhatnagar, and B. J. Baliga, "Comparison of 6H-SiC, 3CSiC, and Si for power devices", IEEE. Trans. Electron. Devices., 40(3), 645 (1993).   DOI
8 T. Hayashi, H. Tanaka, Y. Shimoida, S. Tanimoto, and M. Hoshi, "New High-voltage Unipolar Mode p+ Si/n- 4H-SiC Heterojunction Diode," Mater. Sci. Forum, 953, 483 (2005).
9 W. M. Choi, and H. G. Ahn, "The Switching Characteristic and Efficiency of New Generation SiC MOSFET", J. Korea Inst. Inf. Commun. Eng., 21(2), 353 (2017).   DOI
10 S. Francis, "Rohm supplies silicon carbide power modules to Formula Eracing team Venturi", 4 (2017). https://www.rohm.co.kr
11 Y. F. Wu, J. Gritters, L. Shen, R. P. Smith, J. McKay, R. Barr, and R. Birkhahn, "Performance and robustness of first generation 600-V GaN-on-Si power transistors", IEEE Workshop Wide Bandgap Power Devices and Appl. (WiPDA), 6 (2013).
12 F. Yu, J. Cui, Z. Zhou, K. Fang, R. Johnson, and M. Hamilton, "Reliability of Ag Sintering for Power Semiconductor Die Attach in High-Temperature Applications", IEEE. Trans. Power. Electron., 32(9), 7083 (2017).   DOI
13 K. S. Siow, "Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging", J. Electron. Mater., 43(4), 947 (2014).   DOI
14 M. H. Roh, H. Nishikawa, and J. P. Jung, "A Review of Ag Paste Bonding for Automotive Power Device Packaging", J. Microelectron. Packag. Soc., 22(4), 15 (2015).   DOI
15 T. Wang, X. Chen, G. Q. Lu, and G. Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", J. Electron. Mater., 36(10), 1333 (2007).   DOI
16 H. H. Zhu, L. Lu, and J. Fuh, "Development and characterisation of direct laser sintering Cu-based metal powder", J. Mater. Process. Technol., 140(1-3), 314 (2003).   DOI
17 N. S. Nobeen, T. Imade, B. H. Lee, E. J. R. Phua, C. C. Wong, and C. L. Gan, "Transient liquid phase (TLP) bonding using Sn/Ag multilayers for high temperature applications", Proc. 15th Electronics Packaging Technology Conference (EPTC), Singapore, 647 (2013).
18 T. A. Tollefsen, A. Larsson, O. M Lovvik, and K. Aasmundtveti, "Au-Sn SLID bonding-properties and possibilities", Metallurgical and Materials Transactions B, 43B, 397 (2012).
19 C. I. Kizilyalli, A. Edwards, D. Bour, H. Shah, D. Disney, and H. Nie, "Very-High Performance GaN-on-GaN Diodes", 1st IEEE Workshop on Wide bandgap Devices and Applications (2013).
20 J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices", IEEE Trans. Power Electron., 29, 2155 (2014).   DOI
21 A. Agarwal, "Advances in SiC MOSFET Performance", ECPE SiC & GaN Forum Potential of Wide Band Gap Semiconductors in Power Electronic Applications, Birmingham, (2011).
22 A. Sharma, S. J. Lee, Y. J. Jang, and J. P. Jung, "SiC based Technology for High Power Electronics and Packaging Applications", J. Microelectron. Packag. Soc., 21(2), 71 (2014).   DOI
23 S. C. Ko, W. J. Chang, D. Y. Jung, Y. R. Park, C. H. Jun, and E. S. Nam, "Trends in Wide Band-gap Semiconductor Power Devices for Automotive, Power Conversion Modules and ETRI GaN Power Technology", Electronics and Telecommunications Trends., 29, 53 (2014).
24 R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, "A Review of GaN on SiC High Electron Mobility Power Transistors and MMICs", IEEE Trans. Microwave Theory and Techniques., 60(6), 1764 (2012).   DOI
25 V. Kulikovsky, V. Vorliček, P. Bohač, M. Stranyanek, R. Ctvrtlik, A. Kurdyumov, and L. Jastrabik, "Hardness and elastic modulus of amorphous and nanocrystalline SiC and Si films", Surf. Coat. Technol., 202, 1738 (2008).   DOI