• Title/Summary/Keyword: Si heterojunction

Search Result 146, Processing Time 0.027 seconds

Electrical Properties for Enhanced Band Offset and Tunneling with a-SiOx:H/a-si Structure (a-SiOx:H/c-Si 구조를 통한 향상된 밴드 오프셋과 터널링에 대한 전기적 특성 고찰)

  • Kim, Hongrae;Pham, Duy phong;Oh, Donghyun;Park, Somin;Rabelo, Matheus;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.251-255
    • /
    • 2021
  • a-Si is commonly considered as a primary candidate for the formation of passivation layer in heterojunction (HIT) solar cells. However, there are some problems when using this material such as significant losses due to recombination and parasitic absorption. To reduce these problems, a wide bandgap material is needed. A wide bandgap has a positive influence on effective transmittance, reduction of the parasitic absorption, and prevention of unnecessary epitaxial growth. In this paper, the adoption of a-SiOx:H as the intrinsic layer was discussed. To increase lifetime and conductivity, oxygen concentration control is crucial because it is correlated with the thickness, bonding defect, interface density (Dit), and band offset. A thick oxygen-rich layer causes the lifetime and the implied open-circuit voltage to drop. Furthermore the thicker the layer gets, the more free hydrogen atoms are etched in thin films, which worsens the passivation quality and the efficiency of solar cells. Previous studies revealed that the lifetime and the implied voltage decreased when the a-SiOx thickness went beyond around 9 nm. In addition to this, oxygen acted as a defect in the intrinsic layer. The Dit increased up to an oxygen rate on the order of 8%. Beyond 8%, the Dit was constant. By controlling the oxygen concentration properly and achieving a thin layer, high-efficiency HIT solar cells can be fabricated.

Structural properties of GeSi/Si heterojunction compound semiconductor films by using SPE (SPE법을 통해 형성된 $Ge_xSi_{1-x}/Si$이종접합 화합물 반도체의 결정분석)

  • 안병열;서정훈
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.713-719
    • /
    • 2000
  • In order to Prepare the$Ge_xSi_{1-x}/Si$(111) heterosructure by solid phase epitaxy (SPE), about 1000A of Au and about 1000A Ge were sequentially deposited on the Si(111) substrate. The resulting Ge/Au/Si(111) samples were isochronically annealed in the high vacuum condition. The behaviors of Au and Ge during thermal annealing and the structural Properties of $Ge_xSi_{1-x}$ films were characterized by Auger electron spectroscopy (AES), X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). The a-Ge/Au/Si(111) structure was converted to the Au/GeSi/Si(111) structure. Defects such as stacking faults, point defects and dislocations were found at the GeXSil-X(111) interface, but the film was grown epitaxially with the matching face relationship of $Ge_xSi_{1-x}/$(111)/Si(111). Twin crystals were also found in the $Ge_xSi_{1-x}/$(111) matrix.

  • PDF

HIT 구조를 기반으로 한 태양전지 output 특성 분석

  • Lee, Cho-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.354-356
    • /
    • 2015
  • 본 논문에서는 일본의 Sanyo사에서 발표한 HIT(Heterojunction with Intrinsic Thin layer)구조를 기반으로 하여 태양전지의 output특성을 분석하고자 한다. HIT 태양전지 구조의 경우 a-Si층이 태양전지의 효율과 개방전압 $V_{oc}$의 향상에 중요한 역할을 한다. 본 연구를 통해 a-Si층 내에서의 두께변화가 태양전지 output특성에 어떠한 영향을 주는지 비교해보고, 최고 효율을 낼 수 있는 구조를 찾고자 한다.

  • PDF

유기태양전지 연구 동향

  • Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.20-20
    • /
    • 2010
  • Organic based photovoltaics (OPV) have been received a lot of attention because they are lightweight, inexpensive to fabricate and flexible compare to crystalline Si solar cells. In this seminar, several important progresses in the Polymer PV, such as, formation of bulk heterojunction, development of post annealing technique, tandem cell fabrication will be introduced. In addition that, some efforts to achieve the further improvement in the performance of the Polymer PV will be discussed.

  • PDF

Selective Epitaxial Growth of Si and SiGe using Si-Ge-H-Cl System for Self-Aligned HBT Applications (Si-Ge-H-Cl 계를 이용한 자기정렬 HBT용 Si 및 SiGe의 선택적 에피성장)

  • 김상훈;박찬우;이승윤;심규환;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.573-578
    • /
    • 2003
  • Low temperature selective epitaxial growth of Si and SiGe has been obtained using an industrial single wafer chemical vapor deposition module operating at reduced pressure. Epitaxial Si and heteroepitaxial SiGe deposition with Ge content about 20 % has been studied as extrinsic base for self-aligned heterojunction bipolar transistors(HBTs), which helps to reduce the parasitic resistance to obtain higher maximum oscillation frequencies(f$\_$max/). The dependence of Si and SiGe deposition rates on exposed windows and their evolution with the addition of HCl to the gas mixture are investigated. SiH$_2$Cl$_2$ was used as the source of Si SEG(Selective Epitaxial Growth) and GeH$_4$ was added to grow SiGe SEG. The addition of HCl into the gas mixture allows increasing an incubation time even low growth temperature of 675∼725$^{\circ}C$. In addition, the selectivity is enhanced for the SiGe alloy and it was proposed that the incubation time for the polycrystalline deposit on the oxide is increased probably due to GeO formation. On the other hand, when only SiGe SEG(Selective Epitaxial Growth) layer is used for extrinsic base, it shows a higher sheet resistance with Ti-silicide because of Ge segregation to the interface, but in case of Si or Si/SiGe SEG layer, the sheet resistance is decreased up to 70 %.

Heterojunction Solar Cell with Carrier Selective Contact Using MoOx Deposited by Atomic Layer Deposition (원자층 증착법으로 증착된 MoOx를 적용한 전하 선택 접합의 이종 접합 태양전지)

  • Jeong, Min Ji;Jo, Young Joon;Lee, Sun Hwa;Lee, Joon Shin;Im, Kyung Jin;Seo, Jeong Ho;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.322-327
    • /
    • 2019
  • Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[$Mo(CO)_6$] as precursor and ozone($O_3$) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the $Mo^{6+}$ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from $576^{\circ}C$ to $620^{\circ}C$ at 250 g/Nm after post-deposition annealing at $350^{\circ}C$ in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.

Si wafer passivation with amorphous Si:H evaluated by QSSPC method (비정질 실리콘 증착에 의한 실리콘 웨이퍼 패시베이션)

  • Kim, Sang-Kyun;Lee, Jeong-Chul;Dutta, Viresh;Park, S.J.;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.214-217
    • /
    • 2006
  • p-type 비정질 실리콘 에미터와 n-type 실리콘 기판의 계면에 intrinsic 비정질 실리콘을 증착함으로써 계면의 재결합을 억제하여 20%가 넘는 효율을 보이는 이종접합 태양전지가 Sanyo에 의해 처음 제시된 후 intrinsic layer에 대한 연구가 많이 진행되어 왔다. 하지만 p-type wafer의 경우는 n-type에 비해 intrinsic buffer의 효과가 미미하거나 오히려 특성을 저하시킨다는 보고가 있으며 그 이유로는 minority carrier에 대한 barrier가 상대적으로 낮다는 것과 partial epitaxy가 발생하기 때문으로 알려져 있다. 본 연구에서는 partial epitaxy를 억제하기 위한 방법으로 증착 온도를 낮추고 QSSPC를 사용하여 minority carrier lifetime을 측정함으로써 각 온도에 따른 passivation 특성을 평가하였다. 또한 SiH4에 H2를 섞어서 증착하였을 경우 각 dilution ratio(H2 flow/SiH4 flow)에서의 passivation 특성 또한 평가하였다. 기판 온도 $100^{\circ}C$에서 증착된 샘플의 lifetime이 가장 길었으며 그 이하와 이상에서는 lifetime이 감소하는 경향을 보였다 낮은 온도에서는 박막 자체의 결함이 증가하였기 때문이며 높은 온도에서는 partial epitaxy의 영향으로 추정된다. H2 dilution을 하여 증착한 샘플의 경우 SiH4만 가지고 증착한 샘플보다 훨씬 높은 lifetime을 가졌다 이 또한 박막 FT-IR결과로부터 H2 dilution을 한 경우 compact한 박막이 형성되는 것을 확인할 수 있었는데 radical mobility 증가에 의한 박막 특성 향상이 원인으로 생각된다.

  • PDF

Enhancement of Saturation Current of a p-channel MESFET using SiGe and $\delta$-dopend Layers ($\delta$도핑과 SiGe을 이용한 p 채널 MESFET의 포화 전류 증가)

  • 이찬호;김동명
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.86-92
    • /
    • 1999
  • A SiGe p-channel MESFET using $\delta$-doped layers is designed and the considerabel enhancement of the current driving capability of the device is observed from the result of simulation. The channel consists of double $\delta$-doped layers separated by a low-doped spacer which consists of Si and SiGe. A quantum well is formed in the valence band of the Si/SiGe heterojunction and much more holes are accumulated in the SiGe spacer than those in the Si spacer. The saturation current is enhanced by the contribution of the holes in the spacer. Among the design parameters that affect the performance of the device, the thickness of the SiGe layer and the Ge composition are studied. The thickness of 0~300$\AA$ and the Ge composition of 0~30% are investigated, and saturation current is observed to be increased by 45% compared with a double $\delta$-doped Si p-channel MESFET.

  • PDF

High-Isolation SPDT RF Switch Using Inductive Switching and Leakage Signal Cancellation

  • Ha, Byeong Wan;Cho, Choon Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.411-414
    • /
    • 2014
  • A switch is one of the most useful circuits for controlling the path of signal transmission. It can be added to digital circuits to create a kind of gate-level device and it can also save information into memory. In RF subsystems, a switch is used in a different way than its general role in digital circuits. The most important characteristic to consider when designing an RF switch is keeping the isolation as high as possible while also keeping insertion loss as low as possible. For high isolation, we propose leakage signal cancellation and inductive switching for designing a singlepole double-throw (SPDT) RF switch. By using the proposed method, an isolation level of more than 23 dB can be achieved. Furthermore, the heterojunction bipolar transistor (HBT) process is used in the RF switch design to keep the insertion loss low. It is demonstrated that the proposed RF switch has an insertion loss of less than 2 dB. The RF switch operates from 1 to 8 GHz based on the $0.18-{\mu}m$ SiGe HBT process, taking up an area of $0.3mm^2$.

Recent Development of High-efficiency Silicon Heterojunction Technology Solar Cells (실리콘 이종접합 태양전지 개발동향)

  • Lee, Ahreum;Yoo, Jinsu;Park, Sungeun;Park, Joo Hyung;Ahn, Seungkyu;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.111-122
    • /
    • 2021
  • Silicon heterojunction technology (HJT) solar cells have received considerable attention due to advantages that include high efficiency over 26%, good performance in the real world environment, and easy application to bifacial power generation using symmetric device structure. Furthermore, ultra-highly efficient perovskite/c-Si tandem devices using the HJT bottom cells have been reported. In this paper, we discuss the unique feature of the HJT solar cells, the fabrication processes and the current status of technology development. We also investigate practical challenges and key technologies of the HJT solar cell manufacturers for reducing fabrication cost and increasing productivity.