• Title/Summary/Keyword: Si carbon composite

Search Result 177, Processing Time 0.024 seconds

Effect of physicochemical properties and feed mix ratios on the carbothermic reductions of iron ore with coke

  • S.R.R. Munusamy;S. Manogaran;F. Abdullah;N.A.M. Ya'akob;K. Narayanan
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.161-171
    • /
    • 2024
  • This study aimed to investigate the effect of physicochemical properties and mix ratios of iron ore (oxide feed): coke (reductant) on the carbothermic reductions of iron ore. Coke size was fixed at ≤63 ㎛ while iron ore size varied between 150-63 ㎛ and ≤63 ㎛ respectively. Mix ratios were changed from 100:0 (reference) to 80:20 and 60:40 while the temperature, heating rate and soaking duration in muffle furnace were fixed at 1100 ℃, 10 ℃/min and 1 hour. Particle size analyzer, XRF, CHNS and XRD analyses were used for determination of raw feed characteristics. The occurrence of phase transformations from various forms of iron oxides to iron during the carbothermal reductions were identified through XRD profiles and supported with weight loss (%). XRF analysis proved that iron ore is of high grade with 93.4% of Fe2O3 content. Other oxides present in minor amounts are 2% Al2O3 and 1.8% SiO2 with negligible amounts of other compounds such as MnO, K2O and CuO. Composite pellet with finer size iron particles (≤63 ㎛) and higher carbon content of 60:40 exhibited 45.13% weight lost compared to 32.30% and 3.88% respectively for 80:20 and 100:0 ratios. It is evident that reduction reactions can only occur with the presence of coke, the carbon supply. The small weight loss of 3.88% at 100:0 ratio occurs due to the removal of moisture and volatiles and oxidations of iron ore. Higher carbon supply at 60:40 leads into better heat and mass transfer and diffusivity during carbothermic reductions. Overall, finer particle size and higher carbon supply improves reactivity and gas-solid interactions resulting in increased reductions and phase transformations.

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size (튜브형상 반응소결 탄화규소 부품의 시편크기에 따른 강도평가 유용성 고찰)

  • Kim, Seongwon;Lee, Soyul;Oh, Yoon-Suk;Lee, Sung-Min;Han, Yoonsoo;Shin, Hyun-Ick;Kim, Youngseok
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.450-456
    • /
    • 2017
  • Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

Synthesis and Characterization of SiO2-ZnO Composites for Eco-Green Tire filler (친환경 타이어 충진제 적용을 위한 SiO2-ZnO 복합체 합성 및 특성평가)

  • Jeon, Sun Jeong;Song, Si Nae;Kang, Shin Jae;Kim, Hee Taik
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.357-363
    • /
    • 2015
  • The development of the environment-friendly tire that meets the standard requirements according to tire labeling system can be improved through using highly homogeneous silica immobilized zinc oxide nanoparticles. In this study, a considerable amount of nanoporous silica was essentially added into nano zinc oxide to improve the physiochemical properties of the formed composite. The introduction of nanoporous silica materials in the composite facilitates the improvement of the wear-resistance and increases the elasticity of the tread. Therefore, the introduction of nanoporous silica can replace carbon black as filler in the formation of composites with desirable properties for conventional green tire. Herein, mesoporous silica immobilized zinc oxide nanoparticle with desirable properties for rubber compounds was investigated. Composites with homogeneous dispersion were obtained in the absence of dispersants. The dispersion stability was controlled through varying the molar ratio, ageing time and mixing order of the reactants. A superior dispersion was achieved in the sample obtained using 0.03 mol of zinc precursor as it had the smallest grain size (50.5 nm) and then immobilized in silica aged for 10 days. Moreover, the specific surface area of this sample was the highest ($649m^2/g$).

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites (키토산/제올라이트 복합체의 이산화탄소 흡착 특성)

  • Hong, Woong-Gil;Hwang, Kyung-Jun;Jeong, Gyeong-Won;Yoon, Soon-Do;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.

Effects of Oxygen on Preparation of TiO2 Thin Films by MOCVD (MOCVD법에 의한 TiO2 박막의 제조에 미치는 산소의 영향)

  • Yu, Seong-Uk;Park, Byeong-Ok;Jo, Sang-Hui
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 1995
  • TiO2 thin films were prepared on a (100)silicon wafer using a chemical vapor deposition(CVD) method. The deposition experiments were performed using the TTIP in the deposition temperature ransing from 200 content. The deposition rate of TiO2 was increased with the substrate temperature and the oxygen content. The thickness of the deposited thin film and the compositional analysis of this thin films with theoxygen content were measured using Ellipsometry, SEM and ESCA, respectively. The deposited thin film was composed of a bilayer, external TiO2 and internal Ti. Carbon as a residual impurity was found to remain when zero sccm O2 was purged into a reaction chamber and the composition of the deposited thin film was found to change Ti into TiO in a deeper layer. However, when 600sccm O2 was supplied to a reaction chamber, it has been found to reside less carbon content than without O2. Finally, in the condition of 1200sccm O2, no impurity level of carbon was observed and a deeper layer consisted of the Ti composite, even though the deposited surface was composed of TiO2.

  • PDF

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

Feasibility of Recycling Residual Solid from Hydrothermal Treatment of Excess Sludge

  • Kim, Kyoung-Rean;Fujie, Koichi;Fujisawa, Toshiharu
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.112-118
    • /
    • 2008
  • Residual solid in excess sludge treated by hydrothermal reaction was investigated as raw material for its recycling. Treated excess sludge and residual solid were also focused on their content change during hydrothermal reaction. Two kinds of excess sludge, obtained from a local food factory and a municipal wastewater treatment process, were tested under various conditions. Following hydrothermal reaction, depending on the reaction conditions, biodegradable substrates in treated excess sludge appeared to increase. The separated residual solid was a composite composed of organic and inorganic materials. The proportion of carbon varied from 34.0 to 41.6% depending on reaction conditions. Although 1.89% of hazardous materials were detected, SiO2 (Quartz) was a predominant constituent of the residual solid. X-ray diffraction (XRD) experiments revealed that the residual solid was of a partially amorphous state, suggesting that the residual solids could be easily converted to stable and non harmful substances through a stabilization process. Thus, this technology could be successfully used to control excess sludge and its reuse.