Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.12.4205

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite  

Chung, Young-Min (Energy Storage Research Center, Korea Institute of Science and Technology)
Yu, Seung-Ho (Energy Storage Research Center, Korea Institute of Science and Technology)
Song, Min-Seob (Energy Storage Research Center, Korea Institute of Science and Technology)
Kim, Sung-Soo (Graduate School of Green Energy Technology, Chungnam National University)
Cho, Won-Il (Energy Storage Research Center, Korea Institute of Science and Technology)
Publication Information
Abstract
The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.
Keywords
Lithium manganese iron silicate; Polyanion system; Cathode; Physical blending; Lithium-ion battery;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Nyten, A.; Kamali, S.; Haggstrom, L.; Gustaffson, T.; Thomas, J. O. Mater. Chem. 2006, 16, 2266.   DOI   ScienceOn
2 Dominko, R.; Bele, M.; Gaberscek, M.; Meden, A.; Remska, M.; Jamnik, J. J. Electrochem. Commun. 2006, 8, 217.   DOI   ScienceOn
3 Nyten, A.; Abouimrane, A.; Armand, M.; Gustaffson, T.; Thomas, J. O. J. Electrochem. Commun. 2005, 7, 156.   DOI   ScienceOn
4 Chebiam, R. V.; Prado, F.; Manthiram, A. Chem. Mater. 2001, 12, 2951.
5 Venkatraman, S.; Manthiram, A. Chem. Mater. 2002, 14, 3907.   DOI   ScienceOn
6 Kim, J.; Noh, M.; Kim, J. H. J. Electrochem. Soc. 2005, 152, A1142.   DOI   ScienceOn
7 Dominko, R. J. Power Sources 2008, 184, 462.   DOI   ScienceOn
8 Dominko, R.; Conte, D. E.; Hanzel, D.; Gaberscek, M.; Jamnik, J. J. Power Sources 2008, 178, 842.   DOI   ScienceOn
9 Belharouak, I.; Abouimrane, A.; Amine, K. J. Phys. Chem. 2009, 113, 20733.
10 Kokalj, A.; Dominko, R.; Mali, G.; Meden, A.; Gaberscek, M. J. Jamnik, Chem. Mater. 2007, 19, 3633.   DOI   ScienceOn
11 Lyness, C.; Delobel, B.; Armstron, A. R.; Bruce, P. G. Chem. Commun. 2007; p 4890.
12 Nishimura, A. I.; Hayese, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. J. Am. Chem. Soc. 2008, 130(40), 13212.   DOI   ScienceOn
13 Muraliganth, T.; Stroukoff, K. R.; Manthiram, A. Chem. Mater. 2010, 22, 5754.   DOI   ScienceOn
14 Gong, Z. L.; Li, Y. X.; He, G. N.; Yang, Y. Electrochem. Solid State Lett. 2008, 11(5), A60.   DOI   ScienceOn
15 Deng, C.; Zhang, S.; Fu, B. L.; Yang, S. Y.; Ma, L. Mater. Chem. Phys. 2010, 120, 14.   DOI   ScienceOn