Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.6.450

Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size  

Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Soyul (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Oh, Yoon-Suk (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Han, Yoonsoo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
Shin, Hyun-Ick (Inocera Inc.)
Kim, Youngseok (Inocera Inc.)
Publication Information
Journal of Powder Materials / v.24, no.6, 2017 , pp. 450-456 More about this Journal
Abstract
Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.
Keywords
RBSC (reaction-bonded silicon carbide); Radiant tube; Mechanical strength; C-ring test; Size scaling law;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Hozer, J. R. Lee and Y. M. Chiang: Mater. Sci. Eng. A, 195 (1995) 131.   DOI
2 S. Leo, C. Tallon, N. Stone and G. V. Franks: J. Am. Ceram. Soc., 97 (2014) 3013.   DOI
3 S. Li, Y. Zhang, J. Han and Y. Zhou: J. Eur. Ceram. Soc., 33 (2013) 887.   DOI
4 H. Xia, J. Wang, J. Lin, G. Liu and G. Qiao: Mater. Charact., 82 (2013) 1.   DOI
5 U. Paik, H. C. Park, S. C. Choi, C. G. Ha, J. W. Kim and Y. G. Jung: Mater. Sci. Eng. A, 334 (2002) 267.   DOI
6 Z. Z. Yi, Z. P. Xie, Y. Huang, J. T. Ma and Y. B. Cheng: Ceram. Int., 28 (2002) 369.   DOI
7 Y. Li, J. Lin, J. Gao, G. Qiao and H. Wang: Mater. Sci. Eng. A, 483 (2008) 676.
8 Z. Luo, D. Jiang, J. Zhang, Q. Lin, Z. Chen and Z. Huang: Ceram. Int., 38 (2012) 2125.   DOI
9 $Silit^{R}$ SKD Ceramic Radiant Tube, www.refractories.saint-gobain.com.
10 J. B. Wachtman, W. R. Cannon and M. J. Matthewson: Mechanical Properties of Ceramics, John Wiley & Sons (2009) 119.
11 G. D. Quinn and R. Morrell: J. Am. Ceram. Soc., 74 (1991) 2037.   DOI
12 A. A. Wereszczak, T. P. Kirkland and O. M. Jadaan: J. Am. Ceram. Soc., 90 (2007) 1843.   DOI
13 K. Kwok, L. Kiesel, H. L. Frandsen, M. Sogaard and P. V. Hendriksen: J. Eur. Ceram. Soc., 34 (2014) 1423.   DOI
14 S. Freiman and J. J. Mecholsky Jr: The Fracture of Brittle Materials: Testing and Analysis, John Wiley & Sons (2012) 83.
15 Z. Luo, D. Jiang, J. Zhang, Q. Lin, Z. Chen, and Z. Huang: Int. J. Appl. Ceram. Technol., 10 (2013) 519.   DOI
16 S. Duffy, E. Baker, A. Wereszczak and J. Swab: J. Test. Eval., 33 (2005) 233.
17 G. Sawyer and T. Page: J. Mater. Sci., 13 (1978) 885.   DOI
18 C. S. Kwon, Y. S. Oh, S. M. Lee, Y. Han, H. I. Shin, Y. Kim and S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 467.   DOI
19 S. Aroati, M. Cafri, H. Dilman, M. Dariel and N. Frage: J. Eur. Ceram. Soc., 31 (2011) 841.   DOI