Browse > Article
http://dx.doi.org/10.14478/ace.2020.1012

Adsorption Characteristics of Carbon Dioxide on Chitosan/Zeolite Composites  

Hong, Woong-Gil (Department of Polymer Science and Engineering, Sunchon National University)
Hwang, Kyung-Jun (NanoSD Inc.)
Jeong, Gyeong-Won (Department of Bioenvironmental & Chemical Engineering, Chosun College of Science and Technolgy)
Yoon, Soon-Do (Department of Chemical and Biomolecular Engineering, Chonnam National University)
Shim, Wang Geun (Department of Polymer Science and Engineering, Sunchon National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.2, 2020 , pp. 179-186 More about this Journal
Abstract
In this study, chitosan/zeolite composites were prepared by using basalt-based zeolite impregnated with aqueous chitosan solution for the adsorptive separation of CO2. The prepared composites were characterized by scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption analysis. In addition, the adsorption equilibrium isotherms for CO2 and N2 were measured at 298 K using a volumetric adsorption system, and the results were analyzed by applying adsorption isotherm equations (Langmuir, Freundlich, and Sips) and energy distribution function. It was found that CO2 adsorption capacities were well correlated with the structural characteristics of chitosan and zeolite, and the ratio of elements [N/C, Al/(Si + Al)] formed on the surface of the composite. Moreover, the CO2/N2 adsorption selectivity was calculated under the mixture conditions of 15 V : 85 V, 50 V : 50 V, and 85 V : 15 V using the Langmuir equation and the ideal adsorption solution theory (IAST).
Keywords
Adsorption; Chitosan/zeolite composite; Carbon dioxide; Nitrogen; Selectivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Jamal, A. Meisen, and C. J. Lim, Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-I. Experimental apparatus and mathematical modeling, Chem. Eng. Sci., 61, 6571-6589 (2006).   DOI
2 J. C. S. Terra, J. A. Moores, and F. C. C. Moura, Amine-functionalized mesoporous silica as a support for on-demand release of copper in the $A^3$-coupling reaction: Ultralow concentration catalysis and confinement effect, ACS Sustain. Chem. Eng., 7, 8696-8705 (2019).   DOI
3 Z. Hu, D. Zhang, and J. Wang, Direct synthesis of amine-functionalized mesoporous silica for $CO_2$ adsorption, Chin. J. Chem. Eng., 19, 386-390 (2011).   DOI
4 R. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. Losch, Adsorption of $CO_2$ on zeolites at moderate temperatures, Energy Fuel, 19, 1153-1159 (2005).   DOI
5 M. Pellerano, P. Pre, M. Kacem, and A. Delebarre, $CO_2$ capture by adsorption on activated carbons using pressure modulation, Energy Procedia, 1, 647-653 (2009).   DOI
6 M. Oschatz and M. Antonietti, A search for selectivity to enable $CO_2$ capture with porous adsorbents, Energ. Environ. Sci., 11, 57-70 (2018).   DOI
7 M. J. Lashaki, S. Khiavi, and A. Sayari, Stability of amine-functionalized $CO_2$ adsorbents: A multifaceted puzzle, Chem. Soc. Rev., 48, 3320-3405 (2019).   DOI
8 IEA, Prospects for $CO_2$ capture and storage, Energy Technology Analysis, Paris, France (2004).
9 E. Klein, Affinity membranes: A 10-year review, J. Membr. Sci., 179, 1-27 (2000).   DOI
10 S. H. Hyun, S. Y. Jo, and B. S. Kang, Surface modification of ${\gamma}$-alumina membranes by silane coupling for $CO_2$ separation, J. Membr. Sci., 120, 197-206 (1996).   DOI
11 Y. M. Cho, J. Y. Lee, S. B. Kwon, D. S. Park, J. S. Choi, and J. Y. Lee, Adsorption and desorption characteristics of carbon dioxide at low concentration on zeolite 5A and zeolic 13X, J. Korean Soc. Atmos. Environ., 27, 191-200 (2011).   DOI
12 K.-J. Hwang, W.-S. Choi, S.-H. Jung, Y.-J. Kwon, S. Hong, C. Choi, J.-W. Lee, and W.-G. Shim, Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide, RSC Adv., 8, 9524-9529 (2018).   DOI
13 C. Kim, H. S. Cho, S. Chang, S. J. Cho, and M. Choi, An ethylenediamine-grafted Y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation, Energ. Environ. Sci., 9, 1803-1811 (2016).   DOI
14 Proceedings of the 5th International Symposium on Gas Cleaning, Pittsburgh, USA (2002).
15 K. Min, W. Choi, C. Kim, and M. Choi, Oxidation-stable amine-containing adsorbents for carbon dioxide capture, Nat. Commun., 9, 726 (2018).   DOI
16 S, Brunauer, P. H. Emmett, and E, Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938).   DOI
17 E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373-380 (1951).   DOI
18 M. M. Dubinin and L. V. Radushkevich, The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk. SSSR, 55, 327-329 (1947).
19 D. Avnir and M. Jaroniec, An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials, Langmuir, 5, 1431-1433 (1989).   DOI
20 M. Jaroniec and R. Madey, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, Netherland (1988).
21 W. Rudzinski and D. Everett, Adsorption of Gases on Heterogeneous Solid Surfaces, Academic Press, London, England (1991).
22 D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, England (1998).
23 K.-J. Hwang, C. Im, D.W. Cho, S.-J. Yoo, J.-W. Lee, and W.-G. Shim, Enhanced photovoltaic properties of $TiO_2$ film prepared by polycondensation in sol reaction, RSC Adv., 2, 3034-3048 (2012).   DOI
24 N. M. Julkapli, Z. Ahmad, and H. M. Akil, X-Ray diffraction studies of cross linked chitosan with different cross linking agents for waste water treatment application, AIP Conf. Proc., 1202, 106-111 (2010).
25 F. Zamani, M. Rezapour, and S. Kianpour, Immobilization of L-lysine on zeolite 4A as an organic-inorganic composite basic catalyst for synthesis of ${\alpha},{\beta}$-unsaturated carbonyl compounds under mild conditions, Bull. Korean Chem. Soc., 34, 2367-2374 (2013).   DOI
26 T. C. Drage, K. M. Smith, A. Arenillas, and C. E. Snape, Developing strategies for the regeneration of polyethylenimine based $CO_2$ adsorbents, Energy Procedia, 100, 875-880 (2009).
27 C. Tien, Adsorption Calculations and Modelling, Butterworth-Heinemann, London, England (1994).
28 G. Sneddon, A. Y. Ganin, and H. H. P. Yiu, Sustainable $CO_2$ adsorbents prepared by coating chitosan onto mesoporous silicas for large-scale carbon capture technology, Energy Technol., 3, 249-258 (2015).   DOI
29 Y. H. Yoon, S. D. Yoon, J. W. Nah, and W. G. Shim, Adsorption and release characteristics of sulindac on chitosan-based molecularly imprinted functional polymer films, Appl. Chem. Eng., 30, 233-240 (2019).   DOI
30 J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504 (2009).   DOI
31 A. L. Myers and J. M. Prausnitz, Thermodynamics of mixed-gas adsorption, AIChE J., 11, 121-127 (1965).   DOI
32 D. Panda, E. A. Kumar, S. K. Singh, Amine modification of binder-containing zeolite 4A bodies for post-combustion $CO_2$ capture, Ind. Eng. Chem. Res., 58, 5301-5313 (2019).   DOI