DOI QR코드

DOI QR Code

Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size

튜브형상 반응소결 탄화규소 부품의 시편크기에 따른 강도평가 유용성 고찰

  • Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Soyul (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Yoonsoo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyun-Ick (Inocera Inc.) ;
  • Kim, Youngseok (Inocera Inc.)
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이소율 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 한윤수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 신현익 ((주)이노쎄라) ;
  • 김영석 ((주)이노쎄라)
  • Received : 2017.10.16
  • Accepted : 2017.11.15
  • Published : 2017.12.28

Abstract

Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.

Keywords

References

  1. G. Sawyer and T. Page: J. Mater. Sci., 13 (1978) 885. https://doi.org/10.1007/BF00570528
  2. C. S. Kwon, Y. S. Oh, S. M. Lee, Y. Han, H. I. Shin, Y. Kim and S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 467. https://doi.org/10.4150/KPMI.2014.21.6.467
  3. S. Aroati, M. Cafri, H. Dilman, M. Dariel and N. Frage: J. Eur. Ceram. Soc., 31 (2011) 841. https://doi.org/10.1016/j.jeurceramsoc.2010.11.032
  4. L. Hozer, J. R. Lee and Y. M. Chiang: Mater. Sci. Eng. A, 195 (1995) 131. https://doi.org/10.1016/0921-5093(94)06512-8
  5. S. Leo, C. Tallon, N. Stone and G. V. Franks: J. Am. Ceram. Soc., 97 (2014) 3013. https://doi.org/10.1111/jace.13192
  6. S. Li, Y. Zhang, J. Han and Y. Zhou: J. Eur. Ceram. Soc., 33 (2013) 887. https://doi.org/10.1016/j.jeurceramsoc.2012.10.026
  7. H. Xia, J. Wang, J. Lin, G. Liu and G. Qiao: Mater. Charact., 82 (2013) 1. https://doi.org/10.1016/j.matchar.2013.04.011
  8. U. Paik, H. C. Park, S. C. Choi, C. G. Ha, J. W. Kim and Y. G. Jung: Mater. Sci. Eng. A, 334 (2002) 267. https://doi.org/10.1016/S0921-5093(01)01897-4
  9. Z. Z. Yi, Z. P. Xie, Y. Huang, J. T. Ma and Y. B. Cheng: Ceram. Int., 28 (2002) 369. https://doi.org/10.1016/S0272-8842(01)00104-3
  10. Y. Li, J. Lin, J. Gao, G. Qiao and H. Wang: Mater. Sci. Eng. A, 483 (2008) 676.
  11. Z. Luo, D. Jiang, J. Zhang, Q. Lin, Z. Chen and Z. Huang: Ceram. Int., 38 (2012) 2125. https://doi.org/10.1016/j.ceramint.2011.10.053
  12. $Silit^{R}$ SKD Ceramic Radiant Tube, www.refractories.saint-gobain.com.
  13. J. B. Wachtman, W. R. Cannon and M. J. Matthewson: Mechanical Properties of Ceramics, John Wiley & Sons (2009) 119.
  14. G. D. Quinn and R. Morrell: J. Am. Ceram. Soc., 74 (1991) 2037. https://doi.org/10.1111/j.1151-2916.1991.tb08259.x
  15. A. A. Wereszczak, T. P. Kirkland and O. M. Jadaan: J. Am. Ceram. Soc., 90 (2007) 1843. https://doi.org/10.1111/j.1551-2916.2007.01639.x
  16. K. Kwok, L. Kiesel, H. L. Frandsen, M. Sogaard and P. V. Hendriksen: J. Eur. Ceram. Soc., 34 (2014) 1423. https://doi.org/10.1016/j.jeurceramsoc.2013.12.005
  17. S. Freiman and J. J. Mecholsky Jr: The Fracture of Brittle Materials: Testing and Analysis, John Wiley & Sons (2012) 83.
  18. Z. Luo, D. Jiang, J. Zhang, Q. Lin, Z. Chen, and Z. Huang: Int. J. Appl. Ceram. Technol., 10 (2013) 519. https://doi.org/10.1111/j.1744-7402.2012.02758.x
  19. S. Duffy, E. Baker, A. Wereszczak and J. Swab: J. Test. Eval., 33 (2005) 233.