• Title/Summary/Keyword: Si/O-doped

Search Result 482, Processing Time 0.023 seconds

Effect of Subthreshold Slope on the Voltage Gain of Enhancement Mode Thin Film Transistors Fabricated Using Amorphous SiInZnO

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.250-252
    • /
    • 2017
  • High-performance full swing logic inverters were fabricated using amorphous 1 wt% Si doped indium-zinc-oxide (a-SIZO) thin films with different channel layer thicknesses. In the inverter configuration, the threshold voltage was adjusted by varying the thickness of the channel layer. The depletion mode (D-mode) device used a TFT with a channel layer thickness of 60 nm as it exhibited the most negative threshold voltage (-1.67 V). Inverters using enhancement mode (E-mode) devices were fabricated using TFTs with channel layer thicknesses of 20 or 40 nm with excellent subthreshold slope (S.S). Both the inverters exhibited high voltage gain values of 30.74 and 28.56, respectively at $V_{DD}=15V$. It was confirmed that the voltage gain can be improved by increasing the S.S value.

Surface characteristics of Si-doped $In_{0.1}Ga_{0.9}As$ epilayers due to Si-cell temperature (Si이 첨가된 $In_{0.1}Ga_{0.9}As$ 에피층의 Sit셀 온도에 따른 표면특성 연구)

  • 김동렬;이동율;배인호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.551-556
    • /
    • 2000
  • We have investigated the effect of surface In composition with Si cell temperature on the In$_{0.1}$/Ga$_{0.9}$/As epilayers grown on GaAs substrates. The epilayers were grown by molecular beam epitaxy(MBE) method and were characterized by the pthotoreflectance(PR) measurements. The E$_{o}$ bandgap energies of In$_{0.1}$/Ga$_{0.9}$/As epilayers were observed at around 1.28 eV at room temperature, and the additional shoulder peaks appeared at the higher energies than E$_{o}$ with increase of Si doping concentrations. The intensity of the additional shoulder peak was decreased with lowering the measurement temperature and the peak disappeared with the increase of surface etching time. This results hows that In composition at surface of InGaAs epilayer is decreased with the increase of the doping cell temperature. We consider that the reason of the decrease of In composition at the surface should be due to In re-evaporation from the surface by radiation heat of Si doping cell.ell.ell.ell.

  • PDF

PL characteristics of silicon-nanocrystals as a function of temperature (온도에 따른 실리콘 나노결정 PL 특성)

  • Kim, Kwang-Hee;Kim, Kwang-Il;Kwon, Young-Kyu;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.93-93
    • /
    • 2003
  • Photoluminescence(PL) properties of Silicon nanocrystals (nc-Si) as a function of temperature is reported to consider the mechanism of PL. Nc-Si has been made by $Si^+$ ion-implantation into thermal $SiO_2$ and subsequent annealing. And after gold had been diffused at the same samples above, the resultant PL spectra has been compared to the PL spectra from the non-gold doped nc-Si. PL peak energy variation from nc-Si is same with the variation of energy bandgap of bulk silicon as temperature changes from 6 K to room temperature. This result may mean nc-Si is still indirect transition material like bulk silicon. Gold doped nc-Si reveals short peak wavelength of PL spectrum than gold undoped one. PL peak shift through gold doing process shows clearly the PL mechanism is not from defect or interface states. PL intensity increases from 6K to a certain temperature and then decrease to room temperature. This characteristic with temperature shows that phonon have a role for the luminescence as theory explains that electron and hole can be recombined radiatively by phonon's assist in nc-Si, which is almost impossible in bulk silicon. Therefore luminescence is observed in nc-Si constructed less than a few of unit cell and the peak energy of luminescence can be higher than the bulk bandgap energy by the bandgap widening effect occurs in nanostructure.

  • PDF

Crystal Structure and Photoluminescence of Domestic Natural Alkaline Feldspar (국산 천연알카리 장석의 결정구조와 Photoluminescence)

  • Choi, Jin-Ho;Cheon, Chae-Il;Kim, Jeong-Seog
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.155-159
    • /
    • 2007
  • Blue light-emitting phosphors having the excitation spectrum range of the medium-long ultraviolet ($280nm{\sim}400nm$) have been prepared by solid state reaction method. As a starting material the natural alkaline feldspar powder produced from the domestic mine field in Buyeo, Chungnam-do. The photoluminescence characteristics and crystal structures have been analyzed for the phosphor samples. The powder mixture of the natural alkaline feldspar and the rare-earth oxide was calcined at $800{\sim}1000^{\circ}C\;for\;3{\sim}4h$ in air. The calcined samples we fully ground at room temperature and then heat-treated in the mild reducing gas atmosphere of $5%H_2-95%N_2$ mixture at $1100{\sim}1150^{\circ}C\;for\;3{\sim}4h$. The natural alkaline feldspar material consists of the monoclinic orthoclase ($KAlSi_3O_8$) and the triclinic albite ($NaAlSi_3O_8$) phases. At the $0.5wt%Eu_2O_3$ addition the PL spectrum showed the maximum intensity and with further increase of $Eu_2O_3$ the PL intensity decreased. The albite phase disappeared in the $Eu_2O_3$ doped phosphors. The effect of the co-doped activator on the PL characteristics have been also discussed.

Fabrication and Characterization of Hydrogen Getter Based on Palladium Oxide Doped Nanoporous SiO2/Si Substrate (PdOx가 도핑된 나노 기공구조 SiO2/Si 기반의 수소 게터 제작 및 특성평가)

  • Eom, Nu Si A;Lim, Hyo Ryoung;Choi, Yo-Min;Jeong, Young-Hun;Cho, Jeong-Ho;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.573-577
    • /
    • 2014
  • The existing metal getters are invariably covered with thin oxide layers in air and the native oxide layer must be dissolved into the getter materials for activation. However, high temperature is needed for the activation, which leads to unavoidable deleterious effects on the devices. Therefore, to improve the device efficiency and gas-adsorption properties of the device, it is essential to synthesize the getter with a method that does not require a thermal activation temperature. In this study, getter material was synthesized using palladium oxide (PdOx) which can adsorb $H_2$ gas. To enhance the efficiency of the hydrogen and moisture absorption, a porous layer with a large specific area was fabricated by an etching process and used as supporting substrates. It was confirmed that the moisture-absorption performance of the $SiO_2/Si$ was characterized by water vapor volume with relative humidity. The gas-adsorption properties occurred in the absence of the activation process.

Electrical Properties of Bi-doped Apatite-type Lanthanum Silicates Materials for SOFCs (중·저온 영역 SOFC용 고체 전해질로의 응용을 위한 Bi가 첨가된 아파타이트형 란타늄 실리케이트의 전기적 특성)

  • Kim, Dae-Young;Jeong, Gwang-Ho;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.486-490
    • /
    • 2012
  • $La_{7.33}Bi_2(SiO_4)_6O_2$ specimens were fabricated by standard solid-state synthesis route for solid oxide electrolytes. The calcined powders exhibited uniform particles with a mean particle size of about $28{\mu}m$. The room-temperature structure of $La_{7.33}Bi_2(SiO_4)_6O_2$ specimens was analyzed as hexagonal, space group P63 or P63/m, and the unit cell volume increased with increase a sintering temperature. The specimens sintered at $1,175^{\circ}C$ showed X-ray patterns of homogeneous apatite single phase without the second phase such as $La_2Si_2O_7$ and $La_2SiO_5$. The specimen sintered at $1,175^{\circ}C$ showed the maximum sintered density of 5.49 $g/cm^3$. Increasing the sintering temperature, total conductivities increased, activation energy decreased and the values were $1.98{\times}10^{-5}Scm-1$ and 1.23 eV, respectively.

Preparation and Sintering of YAG Powder Prepared by Precipitation (침전법을 이용한 YAG분말의 합성 및 소결)

  • 하성민;이재홍;박준영;심수만
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.190-196
    • /
    • 2004
  • Yttrium Aluminum Garnet (YAG) powders were synthesized by precipitation of solutions of Al and Y nitrates using ammonium hydrogen carbonate as a precipitant. Y$_2$O$_3$ and YAG phases were formed in the precipitates, which had been attrition-milled. Well-crystallized, phase-pure YAG powders were obtained after calcination of the milled precipitates at 1100$^{\circ}C$ for 1 h. The powders were found to exhibit an excellent sinterability regardless of the addition of SiO$_2$(500 ppm Si) as a sintering aid. All samples already densified to relative densities greater than 70% at 1300$^{\circ}C$ and relative densities of ∼83% at 1400$^{\circ}C$. The samples doped with SiO$_2$ showed a little improvement in densification as compared with those for the undoped samples and resulted in a relative density of 97% at 1600$^{\circ}C$.

Influences of Target-to-Substrate Distance and Deposition Temperature on a-SiOx/Indium Doped Tin Oxide Substrate as a Liquid Crystal Alignment Layer (RF 마그네트론 스퍼터링에서 증착거리와 증착온도가 무기 액정 배향막의 물리적 성질에 미치는 영향에 대한 연구)

  • Park, Jeung-Hun;Son, Phil-Kook;Kim, Ki-Pom;Pak, Hyuk-Kyu
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.521-528
    • /
    • 2008
  • We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-$SiO_x$) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-$SiO_x$ decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between $150^{\circ}\;and\;200^{\circ}$. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-$SiO_x$ thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-$SiO_x$ showed homogeneous alignment; however, in the lower case (x < 1.6), liquid crystals showed homeotropic alignment.

Light Sensing Characteristics of $BaAl_2O_4$ thin film by RF magnetron sputtering (RF 마그네트론 스퍼터링에 의한 $BaAl_2O_4$:Eu 박막의 광센싱 특성)

  • Kim, Sei-Ki;Kang, Jung-Woo;Kwak, Chang-Gon;Ji, Mi-Jung;Choi, Byung-Hyun;Kim, Young-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.54-54
    • /
    • 2008
  • $Eu^{2+}$, $Nd^{3+}$ co-doped $BaAl_2O_4$ are known as a long afterglow phosphor. We found that $Eu^{2+}$-doped $BaAl_2O_4$ showed ptotoconductivity in the range of UV and visual light. In this study, $BaAl_2O_4$:Eu thin film has been prepared by RF sputtering method and a sensing characteristics to UV and visual light was performed. Only $Eu^{2+}$ and $Nd^{3+}$ co-doped $BaAl_2O_4$ powders and targets for deposition were prepared by a convention solid state method, and the deposition was performed in a reducing $H_2$-Ar mixture gas on Si substrates. The observation of crystalline phase and morphology of the sputtered film were performed using XRD, EDX. The photoluminescence and photocurrent to UV and visual light were measured simultaneously using 300W-Xe solar simulator as a light source. It was confirmed that the photocurrent induced by irradiation of light showed a linear relationship to the light intensity.

  • PDF

Oxygen Transport in Highly Boron Doped Silicon Melt

  • Terashima, K.;Abe, K.;Maeda, S.;Nakanishi, H.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.207-209
    • /
    • 1997
  • Influences of boron addition on the oxygen solubiligy in silicon melt and the amount of evaporation loss from the melt surface were investigated. It has been found the oxygen concentration increases from 2${\times}$1018 to 4${\times}$1018 atoms/㎤. The amount of evaporation loss was found to vary widely depending on the melt temperature. The amount of SiO evaporating form boron doped (∼102121 atoms/㎤) silicon melt at 1550$^{\circ}C$ is about twice as much as the value of non-doped melt.

  • PDF