Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.5.250

Effect of Subthreshold Slope on the Voltage Gain of Enhancement Mode Thin Film Transistors Fabricated Using Amorphous SiInZnO  

Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.5, 2017 , pp. 250-252 More about this Journal
Abstract
High-performance full swing logic inverters were fabricated using amorphous 1 wt% Si doped indium-zinc-oxide (a-SIZO) thin films with different channel layer thicknesses. In the inverter configuration, the threshold voltage was adjusted by varying the thickness of the channel layer. The depletion mode (D-mode) device used a TFT with a channel layer thickness of 60 nm as it exhibited the most negative threshold voltage (-1.67 V). Inverters using enhancement mode (E-mode) devices were fabricated using TFTs with channel layer thicknesses of 20 or 40 nm with excellent subthreshold slope (S.S). Both the inverters exhibited high voltage gain values of 30.74 and 28.56, respectively at $V_{DD}=15V$. It was confirmed that the voltage gain can be improved by increasing the S.S value.
Keywords
Amorphous oxide semiconductor; Logic inverter; SiInZnO; Thin film transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. , 82, 733 (2003). [DOI: http://dx.doi.org/10.1063/1.1542677]   DOI
2 P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, Electrochem. Solid-State Lett. , 11, H248 (2008). [DOI: http://dx.doi.org/10.1149/1.2945869]   DOI
3 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature , 432, 488 (2004). [DOI: http://dx.doi.org/10.1038/nature03090]   DOI
4 H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. , 89, 112123 (2006). [DOI: http://dx.doi.org/10.1063/1.2353811]   DOI
5 S. Jacob, S. Abdinia, M. Benwadih, J. Bablet, I. Chartier, R. Gwoziecki, E. Cantatore, A.H.M. van Roermund, L. Maddiona, F. Tramontana, G. Maiellaro, L. Mariucci, M. Rapisarda, G. Palmisano, and R. Coppard, Solid State Electron. , 84, 167 (2013). [DOI: https://doi.org/10.1016/j.sse.2013.02.022]   DOI
6 W. Honda, T. Arie, S. Akita, and K. Takei, Sci. Rep. , 5, 15099 (2015). [DOI: https://doi.org/10.1038/srep15099]   DOI
7 L. Y. Liang, Z. M. Liu, H. T. Cao, Z. Yu, Y. Y. Shi, A. H. Chen, H. Z. Zhang, Y. Q. Fang, and X. L. Sun, J. Electrochem. Soc. , 157, H598 (2010). [DOI: https://doi.org/10.1149/1.3385390]   DOI
8 S. Han and S. Y. Lee, Appl. Phys. Lett. , 106, 212104 (2015). [DOI: http://dx.doi.org/10.1063/1.4921791]   DOI
9 J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Jpn. J. Appl. Phys. , 48, 100 (2009). [DOI: https://dx.doi.org/10.1143/JJAP.48.100202]
10 L. Y. Liang, J. J. Yu, M. Wang, and H. T. Cao, ECS Transactions , 75, 261 (2016). [DOI: https://doi.org/10.1149/07510.0261ecst]
11 P. B. Shea, J. Kanicki, and N. Ono, J. Appl. Phys. , 98, 014503 (2005). [DOI: http://dx.doi.org/10.1063/1.1949713]   DOI
12 S. Han and S. Y. Lee, Phys. Status Solide A , 214, 2 (2016). [DOI: https://doi.org/10.1002/pssa.201600469]
13 J. Y. Choi, S. Kim, B. U. Hwang, N. E. Lee, and S. Y. Lee, Semicond. Sci. Technol. , 31, 125007 (2016). [DOI: https://dx.doi.org/10.1088/0268-1242/31/12/125007]   DOI