• 제목/요약/키워드: Short-time Fourier Transform

검색결과 208건 처리시간 0.023초

저출력 레이저의 치료 효과 규명을 위한 근전도 신호의 피로도 해석 연구 (Muscle Fatigue Analysis Based on Electromyography Signals for The Evaluation of Low-Level Laser Therapy)

  • 김지현;최효훈;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권4호
    • /
    • pp.319-327
    • /
    • 2011
  • Skeletal muscle fatigue is defined as a 'any reduction in the maximal capacity to generate force or power output', and is the reduction of oxygen consumption and by-product of metabolism. For the muscle fatigue therapy, low level laser has been introduced that leads the mitochondrial respiratory and attributes the muscle fatigue recovery. This study analyzed the muscle fatigue signals from electromyography(EMG) during low-level laser therapy (LLLT). Healthy subjects performed voluntary elbow flexion-extension excercise and received placebo LLLT and active LLLT using a 830 nm laser diode. Then, EMG were measured for the evaluation of muscle fatigue. The acquired EMG data were analyzed with median frequency and short time fourier transform methods. The results showed that the LLLT had a significant symptomatic relief of muscle fatigue based on the EMG frequency analysis. Therefore, the muscle fatigue analysis with EMG signals can be applied to quantitative evaluation for the monitoring of LLLT effects.

FMCW 레이다에서 작은 간섭 신호의 효과적인 탐지 및 억제 (Effective Detection and Suppression of Low-Amplitude Interference in FMCW Radars)

  • 조병래;이정수;이종민;선선구
    • 한국전자파학회논문지
    • /
    • 제23권7호
    • /
    • pp.848-851
    • /
    • 2012
  • 많은 레이다 시스템들이 주파수 밴드를 공유하여 동시에 운용될 때, 레이다 시스템 간 간섭은 불가피하게 발생한다. 간섭이 레이다 성능을 저하시킬 수 있기 때문에 간섭의 억제는 레이다 시스템에서 중요한 문제이다. 본 논문에서 STFT와 적응형 대역 저지 필터를 이용하여 간섭을 탐지하고 제거하는 방법을 제안하였다. 실제 FMCW 레이다를 이용하여 제안된 방법의 성능을 검증하였다.

협대역 FMCW 레이더를 이용한 고해상도 레벨게이지 (High Resolution FMCW Level Gauge with Narrowband FMCW Radar)

  • 엄승현;오우진
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.899-905
    • /
    • 2012
  • FMCW 레이더 방식의 레벨게이지는 비 접촉성, 원거리 계측과 다양한 형상으로 구현이 가능한 장점 때문에 많은 연구와 개발이 되어왔으나 cm급의 고 해상도를 얻기 위해서는 GHz의 넓은 대역폭이 필요한 단점이 있다. 본 논문에서는 협대역 시스템으로 광대역 성능을 얻을 수 있는 톱니파 형태의 송신 파형을 제안하였다. 이 방식은 STFT(Short-time fourier transform)로 짧은 구간으로 나누어 처리하고 단일 정현파의 주파수 추정 알고리즘으로 해상도를 개선하고 있으며 실험을 통하여 300MHz의 FMCW레이더에서 8배까지 거리해상도가 개선되는 것을 보였다.

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

XGBoost 알고리즘을 활용한 강우의 음향 및 진동 분석 기반의 강우강도 산정 (Discerning the intensity of precipitation through acoustic and vibrational analysis of rainfall via XGBoost algorithm)

  • 황승현;이진욱;김현준;변종윤;전창현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.209-209
    • /
    • 2023
  • 본 연구에서는 강우 시 발생하는 음향 및 진동 신호를 기반으로 강우강도를 산정하기 위한 방법론을 제안하였다. 먼저, Raspberry Pi, 콘덴서 마이크 및 가속도 센서로 구성된 관측 기기로부터 실제 비가 내리는 환경에서의 음향 및 진동 신호를 수집하였다. 가속도 센서로부터 계측된 진동 신호를 활용하여 강우 유무에 대한 이진 분류를 수행하고, 강우가 발생한 것으로 판단된 기간에 해당하는 음향 신호에 Short-Time Fourier Transform 기술을 적용하여 주파수 영역에서 나타나는 magnitude의 평균과 표준 편차, 최고 주파수 등의 특징을 기반으로 강우강도를 산정하였다. 이를 위해 앙상블 기반의 머신러닝 학습 모델인 XGBoost 알고리즘을 사용하였으며, 광학 우적계를 통해 관측한 강우강도와 산정 결과를 비교·평가하였다. 강우강도 산정 과정에서 사용된 음향 신호의 길이를 1초, 10초, 1분으로 구분하였으며, 무강우 기간 내 음향 정보로부터 배경 음향에 의한 노이즈를 제거하고자 하였다. 최종적으로 강우 유무 이진 분류 과정의 선행 여부, 음향 신호의 길이 및 노이즈 제거 방법에 따른 강우강도 산정 결과들에 대한 성능 비교를 통해 본 연구에서 제안하고자 하는 방법론의 실효성을 평가하였다.

  • PDF

Music Transformer 기반 음악 정보의 가중치 변형을 통한 멜로디 생성 모델 구현 (Implementation of Melody Generation Model Through Weight Adaptation of Music Information Based on Music Transformer)

  • 조승아;이재호
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.217-223
    • /
    • 2023
  • In this paper, we propose a new model for the conditional generation of music, considering key and rhythm, fundamental elements of music. MIDI sheet music is converted into a WAV format, which is then transformed into a Mel Spectrogram using the Short-Time Fourier Transform (STFT). Using this information, key and rhythm details are classified by passing through two Convolutional Neural Networks (CNNs), and this information is again fed into the Music Transformer. The key and rhythm details are combined by differentially multiplying the weights and the embedding vectors of the MIDI events. Several experiments are conducted, including a process for determining the optimal weights. This research represents a new effort to integrate essential elements into music generation and explains the detailed structure and operating principles of the model, verifying its effects and potentials through experiments. In this study, the accuracy for rhythm classification reached 94.7%, the accuracy for key classification reached 92.1%, and the Negative Likelihood based on the weights of the embedding vector resulted in 3.01.

웨이브렛 변환쌍과 적응-길이 메디안 필터를 이용한 임펄스 노이즈 제거에 관한 연구 (A Study on the Removal of Impulse Noiseusing Wavelet Transform Pair and Adaptive-Length Median filter)

  • 배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제7권7호
    • /
    • pp.1575-1581
    • /
    • 2003
  • 사회가 고도의 디지털 정보화 시대로 급속히 발전함에 따라 영상 및 음성 데이터의 획득, 전송, 저장을 위한 멀티 미디어 통신 서비스가 상용화 되어가고 있다. 그러나, 여전히 데이터를 디지털화하거나 전송하는 과정에서 여러 가지 원인에 의해 노이즈가 발생하고 있으며, 이러한 노이즈를 제거하기 위한 연구는 지금까지 계속되고 있다. 노이즈를 제거하기 위해 기존에 FFT와 STFT 등이 있었으나, 신호에 대한 시간정보를 알 수 없고 시간-주파수 국부성이 상충관계를 갖는다. 따라서, 이러한 한계를 극복하기 위해 신호처리 분야의 새로운 기법으로 제시된 웨이브렛 변환은 시간-주파수 국부성을 가지므로, 다양한 신호를 해석하는데 용이할 뿐만 아니라, 다중 해상도 해석이 가능하므로 최근 여러 분야에 응용되고 있다. 그리고, 두 개의 웨이브렛 기저가 힐버트 변환쌍을 형성하도록 설계될 때, 웨이브렛 쌍은 데이터 특징 검출에서 기존의 DWT보다 우수한 성능을 갖는다. 따라서, 본 연구에서는 절단된 계수 벡터에 의해 설계된 두 개의 dyadic 웨이브렛 기저와 적응-길이 메디안 필터를 사용하여 임펄스 노이즈를 제거하였다.

On Wavelet Transform Based Feature Extraction for Speech Recognition Application

  • Kim, Jae-Gil
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.31-37
    • /
    • 1998
  • This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.

  • PDF

Characteristic wave detection in ECG using complex-valued Continuous Wavelet Transforms

  • Berdakh, Abibullaev;Seo, Hee-Don
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권4호
    • /
    • pp.278-285
    • /
    • 2008
  • In this study the complex-valued continuous wavelet transform (CWT) has been applied in detection of Electrocardiograms (ECG) as response to various signal classification methods such as Fourier transforms and other tools of time frequency analysis. Experiments have shown that CWT may serve as a detector of non-stationary signal changes as ECG. The tested signal is corrupted by short time events. We applied CWT to detect short-time event and the result image representation of the signal has showed us that one can easily find the discontinuity at the time scale representation. Analysis of ECG signal using complex-valued continuous wavelet transform is the first step to detect possible changes and alternans. In the second step, modulus and phase must be thoroughly examined. Thus, short time events in the ECG signal, and other important characteristic points such as frequency overlapping, wave onsets/offsets extrema and discontinuities even inflection points are found to be detectable. We have proved that the complex-valued CWT can be used as a powerful detector in ECG signal analysis.