• Title/Summary/Keyword: Short-channel Effect

Search Result 246, Processing Time 0.033 seconds

Characteristics of Short channel effect and Mobility in Triple-gate MOSFETs using strained Silicon-on-Insulator (sSOI) substrate (Strained Silicon-on-Insulator (sSOI) 기판으로 제작된 Triple-gate MOSFETs의 단채널 효과와 이동도 특성)

  • Kim, Jae-min;Sorin, Cristoloveanu;Lee, Yong-hyun;Bae, Young-ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.92-92
    • /
    • 2009
  • 본 논문에서는 strained Silicon-on-Insulator (sSOI) 기판에 제작된 triple-gate MOSFETs 의 이동도와 단채널 효과에 대하여 분석 하였다. Strained 실리콘에 제작된 소자는 전류의 방향이 <110> 밤항일 경우 전자의 이동도는 증가하나 정공의 이동도는 오히려 감소하는 문제점이 있다. 이를 극복하기 위하여 소자에서 전류의 방향이 <110>방향에서 45 도 회전된 <100> 방향으로 흐르게 제작하였다. Strain이 가해지지 않은 기판에 제작된 동일한 구조의 소자와 비교하여 sSOI 에 제작된 소자에서 전자의 이동도는 약 40% 정공의 이동도는 약 50% 증가하였다. 채널 길이가 100 nm 내외로 감소함에 따라 나타나는 drain induced barrier lowering (DIBL) 현상, subthreshold slope (SS)의 증가 현상에서 sSOI에 제작된 소자가 상대적으로 우수한 특성을 보였으며 off-current leakage ($I_{off}$) 특성도 sSOI기판이 더 우수한 특성을 보였다.

  • PDF

Schottky Barrier Tunnel Field-Effect Transistor using Spacer Technique

  • Kim, Hyun Woo;Kim, Jong Pil;Kim, Sang Wan;Sun, Min-Chul;Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Kim, Hyungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.572-578
    • /
    • 2014
  • In order to overcome small current drivability of a tunneling field-effect transistor (TFET), a TFET using Schottky barrier (SBTFET) is proposed. The proposed device has a metal source region unlike the conventional TFET. In addition, dopant segregation technology between the source and channel region is applied to reduce tunneling resistance. For TFET fabrication, spacer technique is adopted to enable self-aligned process because the SBTFET consists of source and drain with different types. Also the control device which has a doped source region is made to compare the electrical characteristics with those of the SBTFET. From the measured results, the SBTFET shows better on/off switching property than the control device. The observed drive current is larger than those of the previously reported TFET. Also, short-channel effects (SCEs) are investigated through the comparison of electrical characteristics between the long- and short-channel SBTFET.

A New Scaling Theory for the Effective Conducting Path Effect of Dual Material Surrounding Gate Nanoscale MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;Suguna, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.92-97
    • /
    • 2008
  • In this Paper, we present a scaling theory for dual material surrounding gate (DMSGTs) MOSFETs, which gives a guidance for the device design and maintaining a precise subthreshold factor for given device parameters. By studying the subthreshold conducting phenomenon of DMSGTs, the effective conductive path effect (ECPE) is employed to acquire the natural length to guide the design. With ECPE, the minimum channel potential is used to monitor the subthreshold behavior. The effect of ECPE on scaling factor significantly improves the subthreshold swing compared to conventional scaling rule. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong;Cho, Hea-Young;Cha, Ji-Hun;Kwon, Kyoung-Jin;Jeon, Seol-Hee;Jo, Su-Hyun;Kim, Eun-Jung;Kim, Hye-Soo;Chung, Hye-Ju
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.448-453
    • /
    • 2010
  • Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET Using Gaussian Distribution (가우스분포를 이용한 이중게이트 MOSFET의 드레인유기장벽감소 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.325-330
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET to be next-generation devices. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. DIBL has been investigated according to projected range and standard projected deviation as variables of Gaussian function, and channel structure and channel doping intensity as device parameter. Since the validity of this analytical potential distribution model derived from Poisson's equation has already been proved in previous papers, DIBL has been analyzed using this model. Resultly, DIBL has been greatly changed for channel structure and doping concentration.

Analysis of Relation between Conduction Path and Threshold Voltages of Double Gate MOSFET (이중게이트 MOSFET의 전도중심과 문턱전압의 관계 분석)

  • Jung, Hakkee;Han, Jihyung;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.818-821
    • /
    • 2012
  • This paper have analyzed the change of threshold voltage for conduction path of double gate(DG) MOSFET. The threshold voltage roll-off among the short channel effects of DGMOSFET have become obstacles of precise device operation. The analytical solution of Poisson's equation have been used to analyze the threshold voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The threshold voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the threshold voltage. Resultly, we know the threshold voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

  • PDF

Analysis of Relation between Conduction Path and Breakdown Voltages of Double Gate MOSFET (DGMOSFET의 전도중심과 항복전압의 관계 분석)

  • Jung, Hakkee;Han, Jihyung;Kwon, Ohshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.825-828
    • /
    • 2012
  • This paper have analyzed the change of breakdown voltage for conduction path of double gate(DG) MOSFET. The low breakdown voltage among the short channel effects of DGMOSFET have become obstacles of device operation. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The change of breakdown voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. Resultly, we know the breakdown voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

  • PDF

Deviation of Threshold Voltages for Conduction Path of Double Gate MOSFET (이중게이트 MOSFET의 전도중심에 따른 문턱전압의 변화)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2511-2516
    • /
    • 2012
  • This paper have analyzed the change of threshold voltage for conduction path of double gate(DG) MOSFET. The threshold voltage roll-off among the short channel effects of DGMOSFET have become obstacles of precise device operation. The analytical solution of Poisson's equation have been used to analyze the threshold voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The threshold voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the threshold voltage. Resultly, we know the threshold voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

A NUMERICAL STUDY ON FLOW AND STIRRING CHARACTERISTICS IN A MICROCHANNEL WITH PERIODIC ARRAY OF CROSS BAFFLES (엇갈림 배플 구조의 마이크로 채널 내 유동 및 혼합 특성에 관한 수치해석적 연구)

  • Heo, S.G.;Kang, S.M.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.101-106
    • /
    • 2006
  • In the microfluidic devices the most important thing is mixing efficiency ol various fluids. In this study a newly designed miler is proposed to enhance the mixing effect with the purpose to apply it to microchannel mixing in a short future. This design is composed of a channel with cross baffles periodically arranged on the both bottom and top surfaces ol the channel. To obtain the yow patterns, the numerical computation was performed by using a commercial code, ANSYS CFX 10.0. To evaluate the mixing performance, we computed Lyapunov exponent and obtained Poincare sections. it was shown that our design provides the excellent mixing effect.

Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development

  • Choe, Changyong;Kang, Dawon
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • $K^+$ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of $K^+$ channels inhibits mouse early embryonic development. This study was designed to identify the effect of $K^+$ channels during bovine embryonic development. $K^+$ channel blockers (tetraethylammonium (TEA), $BaCl_2$, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among $K^+$ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.