DOI QR코드

DOI QR Code

Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development

  • Choe, Changyong (National Institute of Animal Science, RDA) ;
  • Kang, Dawon (Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine)
  • Received : 2014.06.11
  • Accepted : 2014.06.19
  • Published : 2014.06.30

Abstract

$K^+$ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of $K^+$ channels inhibits mouse early embryonic development. This study was designed to identify the effect of $K^+$ channels during bovine embryonic development. $K^+$ channel blockers (tetraethylammonium (TEA), $BaCl_2$, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among $K^+$ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.

Keywords

References

  1. Amenta F, Vega JA, Ricci A and Collier WL. 1992. Localization of 5-hydroxytryptamine-like immunoreactive cells and nerve fibers in the rat female reproductive system. Anat. Rec. 233: 478-484. https://doi.org/10.1002/ar.1092330315
  2. Cammarota M, Bevilaqua LR, Medina JH and Izquierdo I. 2008. ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav. Brain Res. 195: 120-128. https://doi.org/10.1016/j.bbr.2007.11.029
  3. Choi JS, Hahn SJ, Rhie DJ, Yoon SH, Jo YH and Kim MS. 1999. Mechanism of fluoxetine block of cloned voltage-activated potassium channel Kv1.3. J. Pharmacol. Exp. Ther. 291: 1-6.
  4. Choi KL, Aldrich RW and Yellen G. 1991. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated $K^{+}$ channels. Proc. Natl. Acad. Sci. USA. 88: 5092-5095. https://doi.org/10.1073/pnas.88.12.5092
  5. Collier RJ, Hernandez LL and Horseman ND. 2012. Serotonin as a homeostatic regulator of lactation. Domest. Anim. Endocrinol. 43: 161-170. https://doi.org/10.1016/j.domaniend.2012.03.006
  6. Darszon A, Trevino CL, Wood C, Galindo B, Rodriguez-Miranda E, Acevedo JJ, Hernandez-Gonzalez EO, Beltran C, Martinez-Lopez P and Nishigaki T. 2007. Ion channels in sperm motility and capacitation. Soc. Reprod. Fertil. Suppl. 65: 229-244.
  7. Day ML, Johnson MH and Cook DI. 1998. Cell cycle regulation of a T-type calcium current in early mouse embryos. Pflugers Arch. 436:834-842. https://doi.org/10.1007/s004240050712
  8. Day ML, Pickering SJ, Johnson MH and Cook DI. 1993. Cellcycle control of a large-conductance $K^{+}$ channel in mouse early embryos. Nature 365: 560-562. https://doi.org/10.1038/365560a0
  9. Dube F and Amireault P. 2007. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci. 81: 1627-1637. https://doi.org/10.1016/j.lfs.2007.09.034
  10. Edgar VA, Genaro AM, Cremaschi G and Sterin-Borda L. 1998. Fluoxetine action on murine T-lymphocyte proliferation: participation of PKC activation and calcium mobilisation. Cell Signal. 10: 721-726. https://doi.org/10.1016/S0898-6568(98)00016-3
  11. Edgar VA, Sterin-Borda L, Cremaschi GA and Genaro AM. 1999. Role of protein kinase C and cAMP in fluoxetine effects on human T-cell proliferation. Eur. J. Pharmacol. 372: 65-73. https://doi.org/10.1016/S0014-2999(99)00142-9
  12. Enkvetchakul D. 2010. Genetic disorders of ion channels. Mo. Med. 107: 270-275.
  13. Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR and Eberlin MN. 2010. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid. Res. 51: 1218-1227. https://doi.org/10.1194/jlr.D001768
  14. Fumagalli F, Molteni R, Calabrese F, Frasca A, Racagni G and Riva MA. 2005. Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J. Neurochem. 93: 1551-1560. https://doi.org/10.1111/j.1471-4159.2005.03149.x
  15. Genicot G, Leroy JL, Soom AV and Donnay I. 2005. The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63: 1181-1194. https://doi.org/10.1016/j.theriogenology.2004.06.006
  16. Goodnick PJ. 1991. Pharmacokinetics of second generation antidepressants: fluoxetine. Psychopharmacol. Bull. 27: 503-512.
  17. Heitzmann D and Warth R. 2008. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol. Rev. 88: 1119-1182. https://doi.org/10.1152/physrev.00020.2007
  18. Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thummler S, Peng XD, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois JM, Debonnel G and Lazdunski M. 2006. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat. Neurosci. 9: 1134-1141. https://doi.org/10.1038/nn1749
  19. Hur CG, Choe C, Kim GT, Cho SK, Park JY, Hong SG, Han J and Kang D. 2009. Expression and localization of twopore domain $K^{+}$ channels in bovine germ cells. Reproduction 137: 237-244. https://doi.org/10.1530/REP-08-0035
  20. Hur CG, Kim EJ, Cho SK, Cho YW, Yoon SY, Tak HM, Kim CW, Choe C, Han J and Kang D. 2012. $K^{+}$ efflux through two-poredomain $K^{+}$ channels is required for mouse embryonic development. Reproduction 143: 625-636. https://doi.org/10.1530/REP-11-0225
  21. Jehle J, Schweizer PA, Katus HA and Thomas D. 2011. Novel roles for hERG $K^{+}$ channels in cell proliferation and apoptosis. Cell Death Dis. 2: e193. https://doi.org/10.1038/cddis.2011.77
  22. Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL and Mathie A. 2005. Inhibition of the human twopore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br. J. Pharmacol. 144: 821-829. https://doi.org/10.1038/sj.bjp.0706068
  23. Kim CW, Choe C, Kim EJ, Lee JI, Yoon SY, Cho YW, Han S, Tak HM, Han J and Kang D. 2012. Dual effects of fluoxetine on mouse early embryonic development. Toxicol. Appl. Pharmacol. 265: 61-72. https://doi.org/10.1016/j.taap.2012.09.020
  24. Kobayashi T, Washiyama K and Ikeda K. 2003. Inhibition of G protein-activated inwardly rectifying $K^{+}$ channels by fluoxetine (Prozac). Br. J. Pharmacol. 138: 1119-1128. https://doi.org/10.1038/sj.bjp.0705172
  25. Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A and Huber SM. 2005. Ion channels in cell proliferation and apoptotic cell death. J. Membr. Biol. 205: 147-157. https://doi.org/10.1007/s00232-005-0780-5
  26. Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M and Patel AJ. 2003. $K^{+}$-dependent cerebellar granule neuron apoptosis. Role of task leak $K^{+}$ channels. J. Biol. Chem. 278: 32068-32076. https://doi.org/10.1074/jbc.M302631200
  27. Lee AK, Smart JL, Rubinstein M, Low MJ and Tse A. 2011. Reciprocal regulation of TREK-1 channels by arachidonic acid and CRH in mouse corticotropes. Endocrinology 152: 1901-1910. https://doi.org/10.1210/en.2010-1066
  28. Lemberger L, Bergstrom RF, Wolen RL, Farid NA, Enas GG and Aronoff GR. 1985. Fluoxetine: clinical pharmacology and physiologic disposition. J. Clin. Psychiatry 46: 14-19.
  29. Liu C, Cotten JF, Schuyler JA, Fahlman CS, Au JD, Bickler PE and Yost CS. 2005. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress. Brain Res. 1031: 164-173. https://doi.org/10.1016/j.brainres.2004.10.029
  30. Manikkam M, Li Y, Mitchell BM, Mason DE and Freeman LC. 2002. Potassium channel antagonists influence porcine granulosa cell proliferation, differentiation, and apoptosis. Biol. Reprod. 67: 88-98. https://doi.org/10.1095/biolreprod67.1.88
  31. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F and Pierre M. 2004. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J. Mol. Neurosci. 24: 207-216.
  32. Morrison JL, Riggs KW and Rurak DW. 2005. Fluoxetine during pregnancy: impact on fetal development. Reprod. Fertil. Dev. 17: 641-650. https://doi.org/10.1071/RD05030
  33. Paczkowski M, Silva E, Schoolcraft WB and Krisher RL. 2013. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol. Reprod. 88: 111. https://doi.org/10.1095/biolreprod.113.108548
  34. Peters GH, Wang C, Cruys-Bagger N, Velardez GF, Madsen JJ and Westh P. 2013. Binding of serotonin to lipid membranes. J. Am. Chem. Soc. 135: 2164-2171. https://doi.org/10.1021/ja306681d
  35. Qi X, Lin W, Li J, Li H, Wang W, Wang D and Sun M. 2008. Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol. Dis. 31: 278-285. https://doi.org/10.1016/j.nbd.2008.05.003
  36. Somodi S, Varga Z, Hajdu P, Starkus JG, Levy DI, Gaspar Rand Panyi G. 2004. pH-dependent modulation of Kv1.3 inactivation: role of His399. Am. J. Physiol. Cell Physiol. 287: C1067-1076. https://doi.org/10.1152/ajpcell.00438.2003
  37. Thummler S, Duprat F and Lazdunski M. 2007. Antipsychotics inhibit TREK but not TRAAK channels. Biochem. Biophys. Res. Commun. 354: 284-289. https://doi.org/10.1016/j.bbrc.2006.12.199
  38. Tosti E and Boni R. 2004. Electrical events during gamete maturation and fertilization in animals and humans. Hum. Reprod. Update 10: 53-65. https://doi.org/10.1093/humupd/dmh006
  39. Trimarchi JR, Liu L, Smith PJ and Keefe DL. 2002. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. Cell Physiol. 282: C588-594. https://doi.org/10.1152/ajpcell.00365.2001
  40. Vesela J, Rehak P, Mihalik J, Czikkova S, Pokorny J and Koppel J. 2003. Expression of serotonin receptors in mouse oocytes and preimplantation embryos. Physiol. Res. 52: 223-228.
  41. Walsh KB. 2011. Targeting GIRK channels for the development of new therapeutic agents. Front. Pharmacol. 2: 64.
  42. Watanabe H, Akasaka D, Ogasawara H, Sato K, Miyake M, Saito K, Takahashi Y, Kanaya T, Takakura I, Hondo T, Chao G, Rose MT, Ohwada S, Watanabe K, Yamaguchi T and Aso H. 2010. Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology 151: 4776-4786. https://doi.org/10.1210/en.2009-1349
  43. Winston NJ, Johnson MH, McConnell JM, Cook DI and Day ML. 2004. Expression and role of the ether-a-go-go-related (MERG1A) potassium-channel protein during preimplantation mouse development. Biol. Reprod. 70: 1070-1079. https://doi.org/10.1095/biolreprod.103.020917